
Firely Server

Firely

Jan 02, 2023

FIRELY PRODUCTS

1 Overview of Firely Server, Plugins and Facades 3
1.1 Framework . 3
1.2 Complete Server . 4
1.3 Plugins . 5
1.4 Facades . 5

2 Getting Started 7
2.1 Configuration . 8
2.2 Running the server . 8

3 Release notes Firely Server 9
3.1 Older Vonk Release notes . 9
3.2 Security notifications for Firely Server . 30
3.3 Upgrading Firely Server . 31
3.4 Public Endpoint Announcement 8 July 2021 . 31
3.5 Release 4.9.2, August 24th, 2022 . 31
3.6 Release 4.9.1, August 1th, 2022 . 32
3.7 Release 4.9.0, July 6th, 2022 . 32
3.8 Release 4.8.2, May 10th, 2022 . 34
3.9 Release 4.8.1, Mar 5th, 2022 . 35
3.10 Release 4.8.0, Mar 21st, 2022 . 35
3.11 Release 4.7.1, Feb 15th, 2022 . 36
3.12 Release 4.7.0, Feb 1st, 2022 . 37
3.13 Release 4.6.2, Dec 23rd, 2021 . 38
3.14 Release 4.6.1, Dec 15th, 2021 . 38
3.15 Release 4.6.0, Nov 18th, 2021 . 38
3.16 Release 4.5.1 . 40
3.17 Release 4.5.0 . 41
3.18 Release 4.5.0-beta . 42
3.19 Release 4.4.0 . 42
3.20 Release 4.3.0 . 43
3.21 Release 4.2.1 hotfix . 44
3.22 Release 4.2.0 . 45
3.23 Release 4.1.3 hotfix . 46
3.24 Release 4.1.2 hotfix . 46
3.25 Release 4.1.1 hotfix . 46
3.26 Release 4.1.0 . 47
3.27 Release 4.0.0 . 49
3.28 Release 3.9.3 hotfix . 51
3.29 Release 3.9.2 hotfix . 52

i

3.30 Release 3.9.1 hotfix . 52
3.31 Release 3.9.0 . 52
3.32 Release 3.8.0 . 53
3.33 Release 3.7.0 . 54
3.34 Release 3.6.1 . 55
3.35 Release 3.6.0 . 55
3.36 Release 3.5.0 . 56
3.37 Release 3.4.0 . 58
3.38 Release 3.3.0 . 58
3.39 Release 3.2.1 . 59
3.40 Release 3.2.0 . 59
3.41 Release 3.1.3 hotfix . 61
3.42 Release 3.1.0 . 61
3.43 Release 3.0.0 . 62
3.44 Release 3.0.0-beta2 . 64
3.45 Release 3.0.0-beta1 . 65

4 How to upgrade Firely Server? 69
4.1 Upgrading Firely Server . 69
4.2 Upgrading Plugins . 71
4.3 Upgrading Facades . 71
4.4 Migrations . 72

5 Firely Server Roadmap 75
5.1 2022 . 75

6 Frequently asked questions 77
6.1 Conflicting resources upon import . 77
6.2 Searchparameter errors for composite parameters . 77
6.3 .NET SDK not found . 78
6.4 Homepage takes long to load . 78

7 Configuring Firely Server 79
7.1 Firely Server settings . 79
7.2 Firely Server settings with Environment Variables . 89
7.3 Configure the Administration API . 91
7.4 Conformance Resources . 93
7.5 Validating incoming resources . 98
7.6 Using the In-Memory storage . 99
7.7 Using MongoDB . 100
7.8 Using SQL server . 103
7.9 Using SQLite . 107
7.10 Configure http and https . 110
7.11 Cross Origin Resource Sharing (CORS) . 111
7.12 Log settings . 111

8 Firely Server deployment options 119
8.1 Using Firely Server on Docker . 119
8.2 Using Firely Server on Kubernetes with a Helm chart . 127
8.3 Firely Server deployment on Azure Web App Service . 128
8.4 Yellow Button - Firely Server for your Simplifier project . 131
8.5 Deploy Firely Server on a reverse proxy . 136
8.6 Set up an Identity Provider . 146
8.7 Access Control Tokens with Postman . 149
8.8 Performance of Firely Server . 153

ii

9 Security 161
9.1 Access control and SMART . 161

10 Features 173
10.1 FHIR RESTful API . 173
10.2 Bulk Data Export . 178
10.3 Patient $everything . 182
10.4 $lastN Observations . 183
10.5 Custom Operations . 190
10.6 Custom Resources . 193
10.7 Terminology services . 194
10.8 Custom Search Parameters . 200
10.9 Errata to the specification . 202
10.10 Subscriptions . 203
10.11 Auditing . 205
10.12 Reset the database . 209
10.13 Preloading resources . 209
10.14 Multiple versions of FHIR . 210
10.15 HIPAA compliance . 214
10.16 $erase resources . 216

11 Compliance with national ImplementationGuides and certification programs 219
11.1 US CORE . 219
11.2 Nictiz . 221

12 Firely Server Administration API 223
12.1 Functions . 223
12.2 Configuration . 223
12.3 Database . 223

13 Firely Server Plugins 225
13.1 Configure the pipeline . 225
13.2 Configuration classes . 227
13.3 Detailed logging of loading plugins . 229
13.4 The order of plugins . 231
13.5 Important classes and interfaces . 234
13.6 Template for a plugin . 234
13.7 Returning non-FHIR content from a plugin . 235
13.8 Firely Server Plugin example - Create a new landing page . 237
13.9 Firely Server Plugin example - $document operation . 244
13.10 BinaryWrapper plugin . 244
13.11 Convert plugin . 246

14 Firely Server Facade 249
14.1 Facade setup configuration . 249
14.2 Exercise: Build your first Facade . 250
14.3 Prerequisites and Preparations . 250
14.4 Starting your project . 251
14.5 Mapping the database . 251
14.6 Enable Search . 254
14.7 2. Get the data and map to FHIR . 256
14.8 Finalizing search . 258
14.9 Debugging the Facade . 261
14.10 Finalizing your project . 262
14.11 Enable changes to the repository . 265

iii

15 Firely Server Reference Documentation 271
15.1 Plugins available for Firely Server . 271
15.2 Important classes and interfaces . 295
15.3 Architecture . 316
15.4 Dependencies of Firely Server and their licenses . 318

16 Tools 321
16.1 Firely Server Ingest (FSI) . 321

17 Contact us 327

Index 329

iv

Firely Server

Firely Server is Firely’s FHIR server. It was formerly named ‘Vonk’ and is the successor to our Spark server.

Firely Server is the answer to the growing need for a stable server that can be used in a variety of production envi-
ronments. A public sandbox is available at https://server.fire.ly, which is is free to use and intended for testing and
educational purposes only.

On these pages we provide you with the documentation you need to get up and running with your own standard Firely
Server installation, as well as information on how to contact us when you have additional needs, such as a custom
implementation or support contract.

FIRELY PRODUCTS 1

https://fire.ly/products/vonk/
https://server.fire.ly

Firely Server

2 FIRELY PRODUCTS

CHAPTER

ONE

OVERVIEW OF FIRELY SERVER, PLUGINS AND FACADES

1.1 Framework

Firely Server is not just a FHIR Server, it is a processing pipeline for handling standard and custom FHIR requests.
Firely Server consists of this pipeline filled with processors to handle the interactions defined in the FHIR RESTful
API. With Plugins you can add your own processors to the framework to perform custom operations, or fill in cross-
cutting concerns for your business. A Facade is a type of plugin that provides a data access layer for an existing data
repository (e.g. a proprietary system). This image sums it all up:

Firely Server comes in several editions:

3

Firely Server

• Sandbox: try it right now on https://server.fire.ly

• Evaluation: get an evaluation license from Simplifier.net, allowing you to explore all functionality for free during
a week (renewable)

• Community: use Firely Server for free, but only on SQLite

• Commercial use with professional support in different tiers: Startup or Scale

For more information and pricing visit the product site.

1.2 Complete Server

Firely Server is a FHIR Server out of the box. It is built with Microsoft .NET Core and runs on any of the platforms
for which a .NET Core Runtime is available. Linux, Windows, MacOS, Docker etcetera. Installation can be done in
minutes. After that you can configure main features and further details:

• Choose your database: SQLite is configured by default, but for serious use you’d want to configure MongoDB
or SQL Server.

• Configure the level of validation: Firely Server can be very loose or very strict on the validity of the resources
that you send to it.

• Configure endpoints for FHIR versions that you want to support (since Firely Server (Vonk) 3.0.0: FHIR STU3
and FHIR R4)

• Fill in your licensefile.

• Adjust the processing pipeline by trimming it down (excluding certain plugins) or extending it with extra plugins.

Besides configuration of the settings, Firely Server features an Administration API that allows you to configure the
so-called Conformance Resources that drive parsing, serialization, validation and terminology. The Administration
API is pre-filled with Conformance Resources such as the StructureDefinitions, Searchparameters, CodeSystems and
ValueSets that come with the FHIR Specification. Beyond that you can use the Administration API to make Firely
Server aware of:

• Custom profiles, e.g. national or institutional restrictions on the standard FHIR resources.

• Custom resources: you can even define resources beyond those in FHIR and they are treated as if they were
standard FHIR resources.

• CodeSystem and ValueSet resources for terminology.

• Custom Searchparameters: have Firely Server index and search resources on properties that are not searchable
with the searchparameters from the FHIR Specification itself.

Read more on Firely Server:

• Getting Started

• Features

• Firely Server deployment options

• Configuring Firely Server

• Release notes Firely Server

• Firely Server Administration API

4 Chapter 1. Overview of Firely Server, Plugins and Facades

https://server.fire.ly
https://simplifier.net/firely-server
https://fire.ly/products/firely-server/
https://dotnet.microsoft.com/download

Firely Server

1.3 Plugins

A plugin is a library of code that you can buy, clone or create yourself that implements additional or replacement
functionality in Firely Server. Examples are:

• Implementation of a custom operation. E.g. $document (generate a document Bundle based on a Composition
resource), which is available on GitHub.

• Implementation of a cross-cutting concern. Imagine that in your organization every resource that is created or
updated must be logged to a very specific location. You may create a plugin that does exactly that.

• Special handling of specific requests. E.g. requests for a Binary resource where you need to merge in binary data
from one of your systems.

• Provide custom authentication and authorization methods for compliancy with business or governmental rules.

In all cases, a Plugin is technically a .NET Core assembly (or a set of them) containing well-defined configuration
methods that allow Firely Server to:

• add services

• add a processor to the request processing pipeline

Most plugins do both, registering (testable) services that do the actual work and a thin layer around it that adds it as a
processor to the pipeline.

Read more on Firely Server Plugins.

View the session on Plugins from DevDays 2018.

1.4 Facades

A Facade is a Firely Server processing pipeline working on an existing data repository. That repository could be the
database of proprietary system, some API of an existing system or a whole Clinical Data Repository specifically created
to open up data through a FHIR API.

The implementation of a Facade is a special type of plugin that registers services to access the existing data repository.
By building the data access layer you leverage all of the FHIR processing in Firely Server, connected to your repository
- thus creating a FHIR RESTful API for that repository with the least amount of work.

So a Facade is still a Plugin, and therefore technically a .NET Core assembly (or a set of them) having the same well-
defined configuration methods. In the case of a Facade it usually only registers services (and no processor), specifically
implementing the interfaces that define the data access layer in Firely Server:

• ISearchRepository, for reading and searching

• IResourceChangeRepository: for creating, updating, and deleting

Read more on Firely Server Facade.

View the session on Facade from DevDays 2018.

1.3. Plugins 5

https://github.com/FirelyTeam/Vonk.Plugin.DocumentOperation
https://www.youtube.com/watch?v=odYaOM19XXc
https://www.devdays.com/events/devdays-europe-2018/
https://www.youtube.com/watch?v=6SFd1QJJXtA
https://www.devdays.com/events/devdays-europe-2018/

Firely Server

6 Chapter 1. Overview of Firely Server, Plugins and Facades

CHAPTER

TWO

GETTING STARTED

If you want to start using the standard Firely Server in your own Windows environment, follow the steps on this page
to install and run the server. For non Windows systems, or if you want to use Docker for Windows, please look at the
Using Firely Server on Docker section.

1. Download the Firely Server binaries and the license file from Simplifier.net.

2. Extract the downloaded files to a location on your system, for example: C:FirelyServer. We will call this the
working directory.

3. Put the license file in the working directory.

4. In the working directory create a new JSON file and name it appsettings.json. You will use this file for
settings that you want to differ from the defaults in appsettings.default.json. For more background on
how the settings are processed, see Firely Server settings

5. Open appsettings.json, copy the LicenseFile setting from appsettings.default.json to it and change
this property to the name of your license file. For example

"License": {
"LicenseFile": "firelyserver-trial-license.json"

}

Important: The next step assumes you have a .NET Core environment installed. If not, please download and install
ASP.NET Core Runtime 6.x.xx Hosting Bundle before you continue. Choose the latest security patch to mitigate
security issues in previous versions.

6. Open a command prompt or Powershell, navigate to the working directory and run: > dotnet .Firely.
Server.dll

Firely Server will then run on port 4080 of the system.

7. If you want to check if Firely Server is running correctly, open a browser and go to localhost:4080. You
should see a homepage similar to this:

7

https://simplifier.net/vonk
https://dotnet.microsoft.com/en-us/download/dotnet/6.0

Firely Server

Please note that the third example query /Patient/example will only work if you first PUT a Patient with the id
‘example’. You can get this example from the specification.

2.1 Configuration

The section Configuring Firely Server explains how you can configure the Firely Server.

2.2 Running the server

When you have completed your configuration changes, you can run the server. Open a command prompt or Powershell,
navigate to your working directory and run:

> dotnet .\Firely.Server.dll

8 Chapter 2. Getting Started

http://www.hl7.org/implement/standards/fhir/patient-example.json

CHAPTER

THREE

RELEASE NOTES FIRELY SERVER

3.1 Older Vonk Release notes

3.1.1 Release 2.2.0

Database

1. SQL Server: the index tables have their clustered index on their link to the resources. SQL script
‘20190919000000_Cluster_Indexes_On_EntryId.sql’ (found in the /data folder of the Vonk distribution) must
be applied to existing Vonk SQL databases (both to the admin and to the data repositories) to make this change.

Attention: Vonk 2.2.0 (using SQL server) will not start unless this script has been applied to the databases.
Please note that running the script can take considerable time, especially for large databases.

Features

1. When running Vonk in IIS, it now profits from the in-process hosting model that ASP.NET Core offers.

2. Further improved concurrent throughput for SQL Server.

Fix

1. On errors in a transaction, Vonk would not point out the entry if it had no fullUrl. Improved this message by
using the resourcetype and id (if present) instead.

2. _include gave a 500 responsecode if a resource contains absolute references.

3.1.2 Release 2.1.0

Database

1. SQL Server: Improved concurrent throughput.

9

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-2.2

Firely Server

Features

1. Upgrade to HL7.Fhir.Net API 1.3, see the Older SDK release notes.

2. Vonk calls UseIISIntegration for better integration with IIS (if present).

Fix

1. Transactions: references to other resources in the transaction were not updated if the resource being referenced
was in the transaction as an update (PUT). (this error was introduced in 2.0.0).

3.1.3 Release 2.0.1 hotfix

Fix

1. Supported Interactions were not checked for custom operations. In the appsettings.json the custom operations,
like $meta, were ignored. This has been fixed now.

3.1.4 Release 2.0.0 final

This is the final release of version 2.0.0, so the -beta is off. If you directly upgrade from version 1.1, please also review
all the 2.0.0-beta and -beta2 release notes below.

Attention: We upgraded the version of .NET Core used to 2.2. Please get the latest 2.2.x runtime from the .NET
download site. The update was needed for several security patches and speed improvements.

Attention: The structure of the Validation section in the settings has changed. See Validating incoming resources
for details.

Attention: This version of Vonk is upgraded to the Hl7.Fhir.API version 1.2.0. Plugin- and Facade builders will
transitively get this dependency through the Vonk.Core package.

Database

No changes have been made to any of the database implementations.

10 Chapter 3. Release notes Firely Server

https://docs.fire.ly/projects/Firely-NET-SDK/releasenotes.html
https://www.microsoft.com/net/download/core#/runtime/
https://www.microsoft.com/net/download/core#/runtime/

Firely Server

Fix

1. When you created a StructureDefinition for a new resourcetype on /administration, the corresponding endpoint
was not enabled.

2. Vonk does not update references in a transaction when a conditional create is used for an existing resource.

3. Paths in PipelineOptions would interfere if one was the prefix of the other.

4. Indexing a HumanName with no values but just extensions failed.

5. The selflink in a bundle did not contain the sort parameters. In this version the selflink always contains a sort
and a count parameter, even if they were not in the request and the default values have been applied.

6. The import of conformance resources from specification.zip yielded warnings on .sch files.

7. Errors introduced in the 2.0.0-beta versions:

1. Syntax errors in the XML or JSON payload yielded an exception, now they are reported with an Opera-
tionOutcome upon parsing.

2. $expand and other terminology operations caused a NullReference exception.

3. _element did not include the mandatory elements.

Feature

1. Vonk supports Custom Resources. See Custom Resources.

2. Operation $meta is now supported, to quickly get the tags, security labels and profiles of a resource.

3. /metadata, retrieving the CapabilityStatement performs a lot better (just the initial call for a specific Accept-Type
takes a bit longer).

4. Validation can be controlled more detailed. Choose the strictness of parsing independent of the level of validation.
With this, the settings section ‘Validation’ has also changed. See Validating incoming resources.

Plugin and Facade API

1. We upgraded the embedded Fhir.Net API to version 1.2, see the Older SDK release notes.

2. Together with the upgrade to .NET Core 2.2, several libraries were updated as well. Most notably Mi-
crosoft.EntityFrameworkCore.*, to 2.2.3.

3.1.5 Release 2.0.0-beta2

Fix

• Fixed RelationalQuery in Vonk.Facade.Relational, so Vonk.Facade.Starter can be used again.

3.1. Older Vonk Release notes 11

https://docs.fire.ly/projects/Firely-NET-SDK/releasenotes.html

Firely Server

3.1.6 Release 2.0.0-beta

We have refactored Vonk internally to accomodate future changes. There are only minor functional changes to the
FHIR Server. Facade and Plugin builders must be aware of a few interface changes, most notably to the IResource
interface.

This release is a beta release because of the many internal changes, and because we expect to include a few more in the
final release. Have a go with it in your test environment to see whether you encounter any trouble. We also encourage
you to build your plugin and/or facade against it to prepare for code changes upon the final release.

You can still access the latest final release (1.1.0):

• Binaries: through the Simplifier downloads page, choose ‘List previous versions’.

• Docker: docker pull simplifier/vonk:1.1.0

• NuGet: <PackageReference Include="Vonk.Core" Version="1.1.0" />

Database

No changes have been made to any of the database implementations.

Fix

1. The $validate operation processes the profile parameter.

2. If an update brings a resource ‘back to life’, Vonk returns statuscode 201 (previously it returned 200).

3. On an initial Administration Import of specification.zip, Vonk found an error in valueset.xml. This file was fixed
in the specification.zip that comes with Fhir.NET API 1.1.2.

4. Transaction: references within the transaction are automatically changed to the id’s the referenced resources get
from Vonk when processing the transaction. This did not happen for references inside extensions. It does now.

5. Administration Import: an Internal Server Error could be triggered with a zip file with nested directories in it.

• NB: Directories in your zip are still not supported because of Fhir.NET API issue #883, but Vonk will not
error on it anymore.

6. Search: The entry.fullUrl for an OperationOutcome in a Search bundle had a relative url.

7. Search: Processed _elements and _summary arguments were not reported in the selflink of the bundle (or any of
the paging links).

8. Search: The selflink will include a _count parameter, even if it was not part of the request and hence the default
value for _count from the BundleOptions was applied.

9. Search on :exact with an escaped comma (e.g. /Patient?name:exact=value1\,value2) was executed as a
choice. Now the escape is recognized, and the argument processed as one term.

12 Chapter 3. Release notes Firely Server

https://simplifier.net/downloads/vonk
https://github.com/FirelyTeam/firely-net-sdk/issues/883

Firely Server

Feature

1. Upgraded Fhir.NET API to version 1.1.2, see the Older SDK release notes.

2. The Vonk Administration API now allows for StructureMap and GraphDefinition resources to be loaded.

3. The opening page of Vonk (and the only UI part of it) is updated. It no longer contains links that you can only
execute with Postman, and it has a button that shows you the CapabilityStatement.

4. We published our custom operations on Simplifier! And integrated those links into the CapabilityStatement.

5. You can now access older versions of the Vonk binaries through the Simplifier downloads. (This was already
possible for the Docker images and NuGet packages through their respective hubs).

6. Vonk.IdentityServer.Test and Vonk.Facade.Starter have been integrated into the Continuous Integration system.

7. In JSON, the order of the output has changed:

1. If id and/or meta elements were added by Vonk (on a create or update), they will appear at the end of the
resource.

Plugin and Facade API

1. IResource interface and related classes have had several changes. If you encounter problems with adapting your
code, please contact us.

• It derives from the ISourceNode interface from the Fhir.NET API.

• Change and Currency are properties that were only relevant in the repository domain, and not in
the rest of the pipeline. They have been deprecated. You can access the values still with re-
source.GetChangeIndicator() and resource.GetCurrencyIndicator(). This is implemented with Annotations
on the ISourceNode. All of Vonk’s own implementations retain those annotations, but if the relevant an-
notation is somehow missing, default values are returned (ResourceChange.NotSet resp. ResourceCur-
rency.Current).

• The Navigator property is obsolete. The type of it (IElementNavigator) is obsolete in the Fhir.NET API.
To run FhirPath you provide type information and run the FhirPath over an ITypedElement:

//Have IStructureDefinitionSummaryProvider _schemaProvider injected in the␣
→˓constructor.
var typed = resource.ToTypedElement(_schemaProvider);
var matchingElements = typed.Select('your-fhirpath-expression');

• Id, Version and LastUpdated can no longer be set directly on the IResource instance. IResource has become
immutable (just like ISourceNode). The alternatives are:

var resourceWithNewId = resource.SetId("newId");
var resourceWithNewVersion = resource.SetVersion("newVersion");
var resourceWithNewLastUpdated = resource.SetLastUpdated(DateTimeOffset.UtcNow);

• Because the IChangeRepository is responsible for creating new id’s and versions, we also included exten-
sions methods on it to update all three fields at once:

var updatedeResource = changeRepository.EnsureMeta(resource, KeepExisting.Id /␣
→˓Version / LastUpdated);
var updatedResource = changeRepository.FreshMeta(resource); //replaces all three

2. The PocoResource class is obsolete. To go from a POCO (like an instance of the Patient class) to an IResource,
use the ToIResource() extension method found in Vonk.Fhir.R3.

3.1. Older Vonk Release notes 13

https://docs.fire.ly/projects/Firely-NET-SDK/releasenotes.html
https://simplifier.net/vonk-resources
https://github.com/FirelyTeam/Vonk.IdentityServer.Test/
https://github.com/FirelyTeam/Vonk.Facade.Starter

Firely Server

3. The PocoResourceVisitor class is obsolete. Visiting can more effectively be done on an ITypedElement:

//Have IStructureDefinitionSummaryProvider _schemaProvider injected in the␣
→˓constructor.
var typed = resource.ToTypedElement(_schemaProvider);
typed.Visit((depth, element) => {//do what you want with element});

4. SearchOptions has changed:

• Properties Count and Offset have been removed.

• Instead, use _count and _skip arguments in the IArgumentCollection provided to the SearchReposi-
tory.Search method if you need to.

5. We have created a template for a plugin on GitHub. Fetch it for a quick start of your plugin.

3.1.7 Release 1.1.0

Attention: New security issues have been identified by Microsoft. See the Security notifications for Firely Server
for details.

Attention: The setting for the location of the license file has moved. It was in the top level setting LicenseFile.
It still has the same name, but it has moved into the section License. See License for details.

Attention: This version of Vonk is upgraded to the Hl7.Fhir.API version 1.1.1. Plugin- and Facade builders will
transitively get this dependency through the Vonk.Core package.

Database

No changes have been made to any of the database implementations.

Feature

1. Vonk will count the number of requests that it processes. See License for settings on that. Because of this change,
the LicenseFile setting has moved from the top level to under License.

2. The plugin folder (Configuring the Firely Server Pipeline) may now contain subfolders. Plugins will be read
from all underlying folders.

3. Vonk supports If-Match on update. See Managing Resource Contention in the specification for details.

4. Plugins may return non-FHIR content. See Returning non-FHIR content from a plugin.

5. This feature may also be used for Custom Authentication.

6. A Template for a plugin is added to the documentation.

7. A documentation page on performance is added.

8. Upgrade of the Hl7.Fhir.API library to 1.1. See the Older SDK release notes.

14 Chapter 3. Release notes Firely Server

https://github.com/FirelyTeam/Vonk.Plugin.ExampleOperation
http://hl7.org/fhir/http.html#concurrency
https://docs.fire.ly/projects/Firely-NET-SDK/releasenotes.html

Firely Server

Fix

1. Transaction: forward references from one resource to another in a Transaction were not correctly resolved.

2. When you set ValidateIncomingResources to true, Vonk no longer accepts resources with extensions that are
unknown to it. This is now also reflected in the CapabilityStatement.acceptUnknown.

3. The links in a bundle response (Bundle.link) were relative links. Now they are absolute links.

4. HTTP 500 instead of an OO was returned when trying to update a subscription with an invalid request status.

5. If an error is found in a SearchParameter in the Administration database, Vonk logs the (canonical) url of that
SearchParameter for easier reference.

6. Transaction: Response bundle contained versioned fullUrls. We changed that to unversioned urls.

7. Bundles: Response bundles with an OperationOutcome contained a versioned fullUrl for the entry containing
the OperationOutcome. We changed that to an unversioned url.

8. Deleting a resource from the Administration API that does not exist would lead to an internal server error.

Supported Plugins

1. Several fixes have been done on the Document plugin.

3.1.8 Release 1.0.0

Yes! Vonk version 1.0 is out. It is also the first version that is released withouth the -beta postfix. It has been very
stable from the very first version, and now we think it is time to make that formal.

Release 1.0.0 is functionally identical to 0.7.4.0. But we optimized the deployment process for Yellow Button - Firely
Server for your Simplifier project and Docker in general. The contents of the core specification are now preloaded in
the SQLite administration database, so your first startup experience is a lot faster.

3.1.9 Release 0.7.4.0

Database

1. The index definitions for SQL Server have been updated for improved performance. This should be handled
automatically when you start Vonk 0.7.4 and have AutoUpdateDatabase enabled.

Fix

1. Posting a resource with an invalid content-type to the regular FHIR endpoint should result in HTTP 415 and not
HTTP 400.

2. Warning ‘End method “PocoResourceVisitor.VisitByType”, could not cast entity to PocoResource.’ in the log
was incorrect.

3. When running Administration API on SQLite and Vonk on SQL Server, update or delete would fail.

4. Handle quantity with very low precision (e.g. ‘3 times per year’ - 3|http://unitsofmeasure.org|/a).

5. POST to <vonk_base>/Administration/* with another Content-Type than application/json or application/xml re-
sults in HTTP 500.

3.1. Older Vonk Release notes 15

https://github.com/FirelyTeam/Vonk.Plugin.DocumentOperation

Firely Server

Feature

1. Support forward references in a Transaction bundle. Previously Vonk would only process references back to
resources higher up in the bundle.

2. Performance of Validation and Snapshot Generation has improved by approximately 10 times. . .

3. . . . and correctness has improved as well.

4. Administration API also support the NamingSystem resource.

3.1.10 Release 0.7.3.0

Fix

1. Search on /administration/Subscription was broken

2. Neater termination of the Subscription evaluation process upon Vonk shutdown

3. A Bundle of type batch is now rejected if it contains internal references.

4. Urls in the narrative (href and src) are also updated to the actual location on the server.

5. A system wide search on compartment returns 403, explaining that that is too costly.

3.1.11 Release 0.7.2.1

Fix

1. Delete on /administration was broken.

3.1.12 Release 0.7.2.0

Database

1. Fixes 2 and 3 require a reindex for specific searchparameters, if these parameters are relevant to you.

Features and fixes

1. Fix: Reject a search containing a modifier that is incorrect or not supported.

2. Fix: The definition for searchparameter Encounter.length was unclear. We added the correct definition from
FHIR R4 to the errata.zip, so it works for STU3 as well. If this is relevant for you, you may want to reindex for
this searchparameter. See Rebuild the search index for specific searchparameters, just for ‘Encounter.length’.

3. Fix: Error “Unable to index for element of type ‘base64Binary’”. This type of element is now correctly indexed.
One known searchparameter that encounters this type is Device.udi-carrier. If this is relevant to you, you may
want to reindex for this searchparameter. See Rebuild the search index for specific searchparameters, just for
‘Device.udi-carrier’.

4. Fix: Validation would fail on references between contained resources. See also fix #423 in the Older SDK release
notes.

5. Fix: E-tag was missing from the response on a delete interaction.

16 Chapter 3. Release notes Firely Server

https://docs.fire.ly/projects/Firely-NET-SDK/releasenotes.html
https://docs.fire.ly/projects/Firely-NET-SDK/releasenotes.html

Firely Server

6. Fix: An invalid mimetype in the _format parameter (like _format=application/foobar) returned response code
400 instead of 415.

7. Fix: If a subscription errors upon execution, not only set the status to error, but also state the reason in Subscrip-
tion.error for the user to inspect.

8. Fix: Search on /Observation?value-string:missing=false did not work. As did the missing modifier on other
searchparameters on value[x] elements.

9. Feature: After /administration/importResources (see Load Conformance Resources on demand), return an Op-
erationOutcome detailing the results of the operation.

10. Feature: Upon usage of a wrong value for _summary, state the possible, correct values in the OperationOutcome.

11. Feature: Allow for multiple deletes with a Conditional Delete, see Create, read, update, patch, delete.

12. Feature: The version of Vonk is included in the log file, at startup.

13. Configuration: Add Vonk.Smart to the PipelineOptions by default, so the user only needs to set the SmartAutho-
rizationOptions.Enabled to true.

14. Upgrade: We upgraded to the latest C# driver for MongoDb (from 2.4.4 to 2.7.0).

3.1.13 Release 0.7.1.1

Fix

Spinning up a Docker container would crash the container because there was no data directory for SQlite (the default
repository). This has been solved now: Vonk will create the data directory when it does not exist.

3.1.14 Release 0.7.1.0

Attention: Fix nr. 8 requires a reindex/searchparameters with include=Resource._id,Resource.
_lastUpdated,Resource._tag. Please review Re-indexing for new or changed SearchParameters on how to
perform a reindex and the cautions that go with it. Also note the changes to reindexing in fix nr. 1.

Database

1. We added support for SQLite! See Using SQLite for details.

2. We also made SQLite the default setting for both the main Vonk database and the Firely Server Administration
API .

3. With the introduction of SQLite we advise running the Administration API on SQLite. In the future we will
probably deprecate running the Administration API on any of the other databases.

4. Support for CosmosDB is expanded, though there are a few limitations.

3.1. Older Vonk Release notes 17

Firely Server

Facade

1. If you rejected the value for the _id searchparameter in your repository, Vonk would report an InternalServerError.
Now it reports the actual message of your ArgumentException.

Features and fixes

1. We sped up Re-indexing for new or changed SearchParameters. The request will be responded to immediately,
while Vonk starts the actual reindex asynchronously and with many threads in parallel. Users are guarded against
unreliable results by blocking other requests for the duration of the reindex. Reindexing is still not to be taken
lightly. It is a very heavy operation that may take very long to complete. See Re-indexing for new or changed
SearchParameters for details.

2. A really large bundle could lead Vonk (or more specifically: the validator in Vonk) to a StackOverflow. You can
now set limits to the size of incoming data to avoid this.

3. Reindexing is supported on CosmosDB, but it is less optimized than on MongoDB.

4. Using _include or _revinclude would yield an OperationOutcome if there are no search results to include anything
on. Fixed that to return 404 as it should.

5. Using the :not modifier could return false positives.

6. A batch or transaction with an entry having a value for IfModifiedSince would fail.

7. History could not be retrieved for a deleted resource. Now it can.

8. Reindex would ignore the generic searchparameters defined on Resource (_id, _lastUpdated, _tag). Because id
and lastUpdated are also stored apart from the search index, this was really only a problem for _tag. If you rely
on the _tag searchparameter you need to reindex just for the searchparameter ``Resource._tag``.

9. Vonk logs its configuration at startup. See Log of your configuration for details.

3.1.15 Release 0.7.0.0

Database

1. Indexes on the SQL Server repository were updated to improve performance. They will automatically be applied
with AutoUpdateDatabase.

Facade

1. Release 0.7.0.0 is compatible again with Facade solutions built on the packages with versions 0.6.2, with a few
minor changes. Please review the Vonk.Facade.Starter project for an example of the necessary adjustments. All
the differences can be seen in this file comparison.

2. Fix: The SMART authorization failed when you don’t support all the resourcetypes. It will now take into account
the limited set of supported resourcetypes.

3. Fix: Vonk.Facade.Relational.RelationalQueryFactory would lose a _count argument.

4. Documentation: We added documentation on how to implement Create, Update and Delete in a facade on a
relational database. See Enable changes to the repository. This is also added to the example Facade solution on
GitHub.

18 Chapter 3. Release notes Firely Server

https://github.com/FirelyTeam/Vonk.Facade.Starter/commit/ea4734da117e7add0d7155b225f5f320db86919c#diff-c7ac183ffadb9c835e21f6853864bad0
https://github.com/FirelyTeam/Vonk.Facade.Starter/tree/exercise/cud

Firely Server

Features and fixes

1. Feature: Vonk FHIR Plugins has been released. You can now add libraries with your own plugins through
configuration.

2. Feature: Through Vonk FHIR Pluginss you can replace the landing page with one in your own style. We provided
an example on how to do that.

3. Feature: You can now start Vonk from within another directory than the Vonk binaries directory, e.g. c:\
programs>dotnet .\vonk\vonk.server.dll.

4. Feature: You can configure the maximum number of entries allowed in a Batch or Transaction, to avoid over-
loading Vonk. See Batch and transaction.

5. Upgrade: We upgraded the FHIR .NET API to version 0.96.0, see the Older SDK release notes for details. Mainly
#599 affects Vonk, since it provides the next. . .

6. Fix: Under very high load the FhirPath engine would have concurrency errors. The FhirPath engine is used to
extract the search parameters from the resources. This has been fixed.

7. Fix: Search on a frequently used tag took far too long on a SQL Server repository.

8. Fix: The Patient.deceased search parameter from the specification had an error in its FhirPath expression. We
put a corrected version in the errata.zip.

9. Fix: Several composite search parameters on Observation are defined incorrectly in the specification, as is re-
ported in GForge issue #16001. Until the specification itself is corrected, we provide corrections in the errata.zip.

10. Fix: Relative references in a resource that start with a forward slash (like /Patient/123) could not be searched
on.

11. Fix: System wide search within a compartment looked for the pattern <base>/Patient/123/?_tag=bla. Cor-
rected this to <base>/Patient/123/*?_tag=bla

12. Fix: When loading Simplifier resources, Vonk can now limit this to the changes since the previous import,
because the Simplifier FHIR endpoint supports _lastUpdated.

13. Fix: Conformance resources are always loaded into the Administration API when running on a Memory repos-
itory. Or actually, always if there are no StructureDefinitions in the Administration database. To enable this
change, imported files are no longer moved to the AdministrationOptions.ImportedDirectory.

14. Fix: Re-indexing for new or changed SearchParameters would stop if a resource was encountered that could not
properly be indexed. It will now continue working and report any errors afterwards in an OperationOutcome.

15. Fix: The terms and privacy statement on the default landing page have been updated.

16. Fix: When searching on a search parameter of type date, with an argument precision to the minute (but not
seconds), Vonk would reject the argument. It is now accepted.

17. Fix: DateTime fields are always normalized to UTC before they are stored. This was already the case on Mon-
goDb, and we harmonized SQL and Memory to do the same. There is no need to reindex for this change.

18. Fix: When you use accents or Chinese characters in the url for a search, Vonk gives an error.

19. Fix: A reverse chained search on MongoDb sometimes failed with an Internal Server Error.

3.1. Older Vonk Release notes 19

https://docs.fire.ly/projects/Firely-NET-SDK/releasenotes.html
http://hl7.org/fhir/patient.html#search
https://gforge.hl7.org/gf/project/fhir/tracker/?action=TrackerItemEdit&tracker_item_id=16001&start=0
http://hl7.org/fhir/operationoutcome.html

Firely Server

3.1.16 Release 0.6.5.0

Attention: This version changes the way conformance resources are loaded from zip files and/or directories at
startup. They are no longer loaded only in memory, but are added to the Administration API’s database. You will
notice a delay at first startup, when Vonk is loading these resources into the database. See Feature #1 below.

Attention: 2018-06-07: We updated the Database actions for 0.6.5.0, you should always perform a reindex, see
right below.

Database

1. Feature 2, 4 and 14 below require a reindex/all, both for MongoDB and SQL Server.

Facade

1. Release 0.6.5.0 is not released on NuGet, so the latest NuGet packages have version 0.6.2-beta. Keep an eye on
it for the next release. . .

Features and fixes

1. Feature: Run Vonk from you Simplifier project! See Use Firely Server with your Simplifier artifacts for details.

2. Feature: Vonk supports Microsoft Azure CosmosDB. This required a few small changes to the MongoDB im-
plementation (the share the drivers), so please reindex your MongoDB database: reindex/all.

3. Feature: Configuration to restrict support for ResourceTypes, SearchParameters and CompartmentDefinitions,
see Restrict supported resources and SearchParameters.

4. Feature: Errata.zip: collection of corrected search parameters (e.g. that had a faulty expression in the FHIR Core
specification), see Errata to the specification

5. Upgrade: FHIR .NET API 0.95.0 (see the Older SDK release notes)

6. Fix: a search on _id:missing=true was not processed correctly.

7. Fix: better distinction of reasons to reject updates (error codes 400 vs. 422, see RESTful API specification

8. Fix: recognize _format=text/xml and return xml (instead of the default json)

9. Fix: handling of the :not modifier in token searches (include resource that don’t have a value at all).

10. Fix: handling of the :not modifier in searches with choice arguments

11. Fix: fullUrl in return bundles cannot be version specific.

12. Fix: evaluate _count=0 correctly (it was ignored).

13. Fix: correct error message on an invalid _include (now Vonk tells you which resourcetypes are considered for
evaluating the used searchparameter).

14. Fix: indexing of Observation.combo-value-quantity failed for UCUM code for Celcius. This fix requires a rein-
dex/all on this searchparameter.

15. Fix: total count in history bundle.

20 Chapter 3. Release notes Firely Server

https://docs.fire.ly/projects/Simplifier/simplifierFirely-server.html#simplifier-firely-server
https://docs.fire.ly/projects/Firely-NET-SDK/releasenotes.html
http://hl7.org/fhir/http.html#2.21.0.10.1

Firely Server

16. Fix: on vonk.fire.ly we disabled validating all input, so you can now create or update resources also if the relevant
profiles are not loaded (this was neccessary for Crucible, since it references US Core profiles, that are not present
by default).

17. Fix: timeout of Azure Web App on first startup of Vonk - Vonk’s first startup takes some time due to import of
the specification (see Default Conformance Resources). Since Azure Web Apps are allowed a startup time of
about 3 minutes, it failed if the web app was on a low level service plan. Vonk will now no longer await this
import. It will finish startup quickly, but until the import is finished it will return a 423 ‘Locked’ upon every
request.

18. Fix: improved logging on the import of conformance resources at startup (see Import of Conformance Resources).

3.1.17 Release 0.6.4.0

Attention: This version changes the way conformance resources are loaded from zip files and/or directories at
startup. They are no longer loaded only in memory, but are added to the Administration API’s database. You will
notice a delay at first startup, when Vonk is loading these resources into the database. See Feature #1 below.

Database

1. Fix #9 below requires a reindex/all.

Facade

1. Release 0.6.4.0 is not released on NuGet, so the latest NuGet packages have version 0.6.2-beta. This release
is targeted towards the Administration API and Terminology services, both of which are not (yet) available in
Facade implementations. We are working on making the features of the Administration API available to Facade
implementers in an easy way.

Features and fixes

1. Feature: Make all loaded conformance resources available through the Administration API.

Previously:

• Only SearchParameter and CompartmentDefinition resources could be loaded from ZIP files and directo-
ries;

• And those could not be read from the Administration API.

Now:

• The same set of (conformance) resourcetypes can be read from all sources (ZIP, directory, Simplifier);

• They are all loaded into the Administration database and can be read and updated through the Administration
API.

Refer to Conformance Resources for details.

2. Feature: Experimental support for Terminology services operations $validate-code, $expand, $lookup, $com-
pose.

3. Feature: Support for Compartment Search.

4. Feature: Track timing of major dependencies in Azure Application Insights.

3.1. Older Vonk Release notes 21

http://www.hl7.org/implement/standards/fhir/search.html#2.21.1.2

Firely Server

5. Feature: Log settings can be overridden in 4 levels, just as the appsettings. The logsettings.json file will not be
overwritten anymore by a Vonk distribution.

6. Fix: The check for allowed profiles is no longer applied to the Administration API. Previously setting Allowed-
Profiles to e.g. [http://mycompany.org/fhir/StructureDefinition/mycompany-patient] would prohibit you to ac-
tually create or update the related StructureDefinition in the Administration API.

7. Fix: When posting any other resourcetype than the supported conformance resources to the Administration API,
Vonk now returns a 501 (Not Implemented).

8. Fix: Support search on Token with only a system (e.g. <base>/Observation?code=http://loinc.org|)

9. Fix: Support search on Token with a fixed system, e.g. <base>/Patient?gender=http://hl7.org/fhir/
codesystem-administrative-gender.html|female. This fix requires a reindex/all.

10. Fix: Reindex could fail when a Reference Searchparameter has no targets.

11. Fix: Vonk works as Data Server on ClinFHIR, with help of David Hay.

12. Fix: Clearer error messages in the log on configuration errors.

13. Fix: Loading conformance resources from disk in Docker.

Documentation

1. We added documentation on using IIS or NGINX as reverse proxies for Vonk.

2. We added documentation on running Vonk on Azure Web App Services.

3.1.18 Release 0.6.2.0

Attention: The loading of appsettings is more flexible. After installing a new version you can simply paste your
previous appsettings.json in the Vonk directory. Vonk’s default settings are now in appsettings.default.json. see
Firely Server settings for details.

Database

No changes

Features and fixes

1. Feature: Conditional References in Transactions are resolved.

2. Feature: More flexible support for different serializers (preparing for ndjson in Bulkdata)

3. Feature: Improved handling on missing settings or errors in the Firely Server settings.

4. Feature: Improved logging, including Dependency Tracking on Azure Application Insights, see Application
Insights

5. Feature: SearchParameter and CompartmentDefinition are now also imported from Simplifier, so both Simpli-
fier import and the Administration API support the same set of conformance resources: StructureDefinition,
SearchParameter, CompartmentDefinition, ValueSet and CodeSystem. See Conformance resources.

6. Feature: Loading of appsettings is more flexible, see Firely Server settings.

7. Feature: Added documentation on running Vonk behind IIS or NGINX: Deploy Firely Server on a reverse proxy.

22 Chapter 3. Release notes Firely Server

http://mycompany.org/fhir/StructureDefinition/mycompany-patient
http://clinfhir.com

Firely Server

8. Performance: Improvement in speed of validation, especially relevant if you are Validating incoming resources.

9. Fix: If you try to load a SearchParameter (see Load Conformance Resources from disk) that cannot be parsed
correctly, Vonk puts an error about that in the log.

10. Fix: Results from _include and _revinclude are now marked with searchmode: Include (was incorrectly set to
‘Match’ before)

11. Fix: _format as one of the parameters in a POST Search is correctly evaluated.

12. Fix: No more errors in the log about a Session being closed before the request has finished (“Error closing the
session. System.OperationCanceledException: The operation was canceled.”)

13. Fix: Subscription.status is evaluated correctly upon create or update on the Administration API

14. Fix: Token search with only a system is supported (Observation.code=somesystem|)

15. Fix: On validation errors like ‘Cannot resolve reference Organization/Organization-example26”’ are now sup-
pressed since the validator is set not to follow these references.

16. Fix: New Firely logo in SVG format - looks better

17. Fix: Creating resources with duplicate canonical url’s on the Administration API is prohibited, see Conformance
Resources.

18. Fix: If a Compartment filter is used on a parameter that is not implemented, Vonk will return an error, see
Compartments.

3.1.19 Release 0.6.1.0

Name change from Furore to Firely

3.1.20 Release 0.6.0.0

Attention:
• SearchParametersImportOptions is renamed to MetadataImportOptions.

• Subscription can now be disabled from the settings.

Database

1. The MongoDB implementation got a new index. It will be created automatically upon startup.

Features and fixes

1. Feature: Access control based on SMART on FHIR.

2. Feature: Vonk can also load CompartmentDefinition resources. See Conformance Resources for instructions.

3. Feature: ValueSet and CodeSystem resources can be loaded into the administration endpoint, and loaded from
Simplifier. See Conformance Resources for instructions.

4. Feature: Be lenient on trailing slashes in the url.

5. Feature: OperationOutcome is now at the top of a Bundle result. For human readers this is easier to spot any
errors or warnings.

3.1. Older Vonk Release notes 23

Firely Server

6. Fix: In the settings for SQL Server it was possible to specify the name of the Schema to use for the Vonk tables.
That was actually not evaluated, so we removed the option for it. It is fixed to ‘vonk’.

7. Fix: The OperationOutcome of the Reset operation could state both an error and overall success.

8. Fix: If you did not set the CertificatePassword in the appsettings, Vonk would report a warning even if the
password was not needed.

9. Fix: Loading conformance resources in the SQL Server implementation could lead to an error.

10. Fix: Clearer error messages if the body of the request is mandatory but empty.

11. Fix: Clearer error message if the Content-Type is missing.

12. Fix: GET on [base]/ would return the UI regardless of the Accept header. Now if you specify a FHIR mimetype
in the Accept header, it will return the result of a system wide search.

13. Fix: In rare circumstances a duplicate logical id could be created.

14. Fix: GET [base]/metadat would return status code 200 (OK). But it should return a 400 and an OperationOutcome
stating that ‘metadat’ is not a supported resourcetype.

Documentation

1. We consolidated documentation on loading conformance resources into Conformance Resources.

3.1.21 Release 0.5.2.0

Attention: Configuration setting SearchOptions is renamed to BundleOptions.

Features and fixes

1. Fix: When you specify LoadAtStartup in the ResourceLoaderOptions, an warning was displayed: “WRN No
server base configured, skipping resource loading.”

2. Fix: Conditional create that matches an existing resource returned that resource instead of an OperationOutcome.

3. Fix: _has, _type and _count were in the CapabilityStatement twice.

4. Fix: _elements would affect the stored resource in the Memory implementation.

5. Fix: Getting a resource with an invalid id (with special characters or over 64 characters) now returns a 404 instead
of 501.

6. Feature: Re-indexing for new or changed SearchParameters now also re-indexes the Administration API
database.

7. Fix: modifier :above for parameter type Url now works on the MongoDB implementation.

8. Fix: Vonk would search through inaccessible directories for the specification.zip.

9. Fix: Subscription could not be posted if ‘Database’ was not one of the SearchParametersImportOptions.

10. Fix: _(rev)include=* is not supported but was not reported as such.

11. Fix: In a searchresult bundle, the references to other resources are now made absolute, refering to the Vonk server
itself.

12. Fix: BundleOptions (previously: SearchOptions) settings were not evaluated.

24 Chapter 3. Release notes Firely Server

http://www.hl7.org/implement/standards/fhir/http.html#ccreate

Firely Server

13. Fix: Different responses for invalid resources when you change ValidateIncomingResources setting (400 vs. 501)

14. Fix: Better reporting of errors when there are invalid modifiers in the search.

15. Fix: Creating a resource that would not fit MongoDB’s document size resulted in an inappropriate error.

16. Fix: There was no default sort order in the search, resulting in warnings from the SQL implementation. Added
default sort on _lastUpdated (desc).

17. Fix: Preliminary disposal of LocalTerminology server by the Validator.

Facade

1. Fix: _include/_revinclude on searchresults having contained resources triggered a NotImplementedException.

3.1.22 Release 0.5.1.1

Facade

We released the Facade libraries on NuGet along with getting started documentation.

No features have been added to the Vonk FHIR Server.

3.1.23 Release 0.5.0.0

Database

1. Long URI’s for token and uri types are now supported, but that required a change of the SQL Server database
structure. If you have AutoUpdateDatabase enabled (see Using SQL server), Vonk will automatically apply the
changes. As always, perform a backup first if you have production data in the database.

2. To prevent duplicate resources in the database we have provided a unique index on the Entry table. This update
does include a migration. It can happen that that during updating of your database it cannot apply the unique
index, because there are duplicate keys in your database (which is not good). Our advise is to empty your database
first (with <vonk-endpoint>/administration/reset, then update Vonk with this new version and then run
Vonk with AutoUpdateDatabase=true (for the normal and the administration databases).

If you run on production and encounter this problem, please contact our support.

Features and fixes

1. Feature: POST on _search is now supported

2. Fix: Statuscode of <vonk-endpoint>/administration/preload has changed when zero resources are
added. The statuscode is now 200 instead of 201.

3. Fix: OPTIONS operation returns now the capability statement with statuscode 200.

4. Fix: A search operation with a wrong syntax will now respond with statuscode 400 and an OperationOutcome.
For example GET <vonk-endpoint>/Patient?birthdate<1974 will respond with statuscode 400.

5. Fix: A statuscode 501 could occur together with an OperationOutcome stating that the operation was successful.
Not anymore.

6. Fix: An OperationOutcome stating success did not contain any issue element, which is nog valid. Solved.

3.1. Older Vonk Release notes 25

https://www.nuget.org/packages?q=vonk

Firely Server

7. Improvement: In the configuration on Load Conformance Resources from simplifier.net the section
ArtifactResolutionOptions has changed to ResourceLoaderOptions and a new option has been intro-
duced under that section named LoadAtStartup which, if set to true, will attempt to load the specified resource
sets when you start Vonk

8. Improvement: the Memory implementation now also supports SimulateTransactions

9. Improvement: the option SimulateTransactions in the configuration defaults to false now

10. Feature: You can now add SearchParameters at runtime by POSTing them to the Administration API. You need
to apply Re-indexing for new or changed SearchParameters to evaluate them on existing resources.

11. Fix: The batch operation with search entries now detects the correct interaction.

12. Fix: ETag header is not sent anymore if it is not relevant.

13. Fix: Searching on a String SearchParameter in a MongoDB implementation could unexpectedly broaden to other
string parameters.

14. Fix: If Reference.reference is empty in a Resource, it is no longer filled with Vonks base address.

15. Feature: Search operation now supports _summary.

16. Fix: Paging is enabled for the history interaction.

17. Fix: Conditional updates won’t create duplicate resources anymore when performing this action in parallel.

18. Fix: Indexing of CodeableConcept has been enhanced.

19. Fix: Search on reference works now also for an absolute reference.

20. Fix: Long uri’s (larger than are 128 characters) are now supported for Token and Uri SearchParameters.

21. Improvement: The configuration of IP addresses in Limited access has changed. The format is no longer a
comma-separated string but a proper JSON array of strings.

3.1.24 Release 0.4.0.1

Database

1. Long URL’s for absolute references are now supported, but that required a change of the SQL Server database
structure. If you have AutoUpdateDatabase enabled, Vonk will automatically apply the changes. As always,
perform a backup first if you have production data in the database.

2. Datetime elements have a new serialization format in MongoDB. After installing this version, you will see warn-
ings about indexes on these fields. Please perform Re-indexing for new or changed SearchParameters, for all
parameters with <vonk-endpoint>/administration/reindex/all. After the operation is complete, restart
Vonk and the indexes will be created without errors.

Features and fixes

1. Fix: SearchParameters with a hyphen (‘-’, e.g. general-practitioner) were not recognized in (reverse) chains.

2. Fix: CapabilityStatement is more complete, including (rev)includes and support for generic parameters besides
the SearchParameters (like _count). Also the SearchParameters now have their canonical url and a description.

3. Improvement: Preloading resources gives more informative warning messages.

4. Fix: Re-indexing for new or changed SearchParameters did not handle contained resources correctly. If you
have used this feature on the 0.3.3 version, please apply it again with <vonk-endpoint>/administration/
reindex/all to correct any errors.

26 Chapter 3. Release notes Firely Server

Firely Server

5. Improvement: Loading resources from Simplifier now also works for the Memory implementation.

6. Improvements on Validation:

• profile parameter can also be supplied on the url

• if validation is successful, an OperationOutcome is still returned

• it always returns 200, and not 422 if the resource could not be parsed

7. Feature: support for Conditional Read, honouring if-modified-since and if-none-match headers.

8. Fix: Allow for url’s longer than 128 characters in Reference components.

9. Fix: Allow for an id in a resource on a Create interaction (and ignore that id).

10. Fix: Allow for an id in a resource on a Conditional Update interaction (and ignore that id).

11. Fix: Include Last-Modified header on Capability interaction.

12. Fix: Format Last-Modified header in httpdate format.

13. Fix: Include version in bundle.entry.fullUrl on the History interaction.

14. Fix: Update _sort syntax from DSTU2 to STU3. Note: _sort is still only implemented for _lastUpdated,
mainly for the History interaction.

15. Improvement: If the request comes from a browser, the response is sent with a Content-Type of application/xml,
to allow the browser to render it natively. Note that most browsers only render the narrative if they receive xml.

3.1.25 Release 0.3.3.0

Attention: We upgraded to .NET Core 2.0. For this release you have to install .NET Core Runtime 2.0, that you
can download from dot.net.

Hosting

The options for enabling and configuring HTTPS have moved. They are now in appsettings.json, under
‘Hosting’:

"Hosting": {
"HttpPort": 4080,
"HttpsPort": 4081, // Enable this to use https
"CertificateFile": "<your-certificate-file>.pfx", //Relevant when HttpsPort is␣

→˓present
"CertificatePassword" : "<cert-pass>" // Relevant when HttpsPort is present

},

This means you have to adjust your environment variables for CertificateFile and CertificatePassword (if you had
set them) to:

VONK_Hosting:CertificateFile
VONK_Hosting:CertificatePassword

The setting ‘UseHttps’ is gone, in favour of Hosting:HttpsPort.

3.1. Older Vonk Release notes 27

https://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3.1
https://www.microsoft.com/net/download/core#/runtime/

Firely Server

Database

There are no changes to the database structure.

Features and fixes

1. Feature: Subscription is more heavily checked on create and update. If all checks pass, status is set to active. If
not, the Subscription is not stored, and Vonk returns an OperationOutcome with the errors.

• Criteria must all be supported

• Endpoint must be absolute and a correct url

• Enddate is in the future

• Payload mimetype is supported

2. Feature: use _elements on Search

3. Feature: load profiles from your Simplifier project at startup.

4. Feature: Content-Length header is populated.

5. Fix: PUT or POST on /metadata returned 200 OK, but now returns 405 Method not allowed.

6. Fix: Sometimes an error message would appear twice in an OperationOutcome.

7. Fix: _summary is not yet implemented, but was not reported as ‘not supported’ in the OperationOutcome. Now
it is. (Soon we will actually implement _summary.)

8. Fix: If-None-Exist header was also processed on an update, where it is only defined for a create.

9. Fix: Set Bundle.entry.search.mode to ‘outcome’ for an OperationOutcome in the search results.

10. UI: Display software version on homepage.

3.1.26 Release 0.3.2.0

1. Fix: _include and _revinclude could include too many resources.

3.1.27 Release 0.3.1.0

1. IP address restricted access to Administration API functions.

2. Fix on Subscriptions:

1. Accept only Subscriptions with a channel of type rest-hook and the payload (if present) has a valid mime-
type.

2. Set them from requested to active if they are accepted.

28 Chapter 3. Release notes Firely Server

Firely Server

3.1.28 Release 0.3.0.0

1. Database changes

If you have professional support, please consult us on the best way to upgrade your database.

1. The schema for the SQL Database has changed. It also requires re-indexing all resources.

2. The (implicit) schema for the documents in the MongoDb database has changed.

3. The Administration API requires a separate database (SQL) or collection (MongoDb).

2. New features:

1. Custom Search Parameters

2. Support for Subscriptions with rest-hook channel

3. Preload resources from a zip.

4. Reset database

5. Conditional create / update / delete

6. Support for the prefer header

7. Validation on update / create (can be turned on/off)

8. Restrict creates/updated to specific profiles.

9. Configure supported interactions (turn certain interactions on/off)

3. New search features:

1. _has

2. _type (search on system level)

3. _list

4. _revinclude

4. Enhancements

1. :exact: Correctly search case (in)sensitive when the :exact modifier is (not) used on string parameters.

2. Enhanced reporting of errors and warnings in the OperationOutcome.

3. Custom profiles / StructureDefinitions separated in the Administration API (instead of in the regular database).

4. Full FHIRPath support for Search Parameters.

5. Fixed date searches on dates without seconds and timezone

6. Fixed evaluation of modifier :missing

7. Correct total number of results in search result bundle.

8. Fix paging links in search result bundle

9. Better support for mimetypes.

5. DevOps:

1. New Firely Server Administration API

2. Enabled logging of the SQL statements issued by Vonk (see Log settings)

3. Migrations for SQL Server (auto create database schema, also for the Administration API)

6. Performance

3.1. Older Vonk Release notes 29

Firely Server

1. Added indexes to MongoDb and SQL Server implementations.

3.2 Security notifications for Firely Server

3.2.1 January 2021

Microsoft has a new Security Advisory regarding ASP.NET Core:

• Microsoft Security Advisory CVE-2020-1161 | ASP.NET Core Denial of Service Vulnerability in all ASP.NET
Core applications on runtime 3.1.3 or lower (#416). If you are not already up-to-date, you should install the latest
runtime version from https://dotnet.microsoft.com/download/dotnet-core/3.1

3.2.2 July 2020

Microsoft has published several newer Security Advisories regarding ASP.NET Core:

• Microsoft.ApplicationInsights.AspNetcore 2.12 was vulnerable to CVE-2005-2224. We upgraded it to 2.14.

• Microsoft Security Advisory CVE-2020-0602 : ASP.NET Core Denial of Service Vulnerability, #402 and

• Microsoft Security Advisory CVE-2020-0603 : ASP.NET Core Remote Code Execution Vulnerability, #403.
These affect applications running SignalR. Vonk does not use SignalR. Nevertheless we recommend to follow
Microsoft’s advice: For machines running .NET Core 3.1, you should download and install Runtime 3.1.1 or
SDK 3.1.101 from https://dotnet.microsoft.com/download/dotnet-core/3.1

• Microsoft Security Advisory | MessagePack Denial of Service, #405. This only affect applications using Mes-
sagePack, which Vonk does not use.

3.2.3 September 2019

Updates regarding previous Security Advisories:

• Please upgrade the ASP.NET Core runtime to at least version 2.2.7, from the runtimes download page. This
solves:

– #334

– #373

– #384

– #385

• #295: Vonk has been upgraded to ASP.NET Core 2.2, and is therefore no longer vulnerable to this issue. It is
nevertheless advised to run a publicly exposed Vonk behind a proxy or on an Azure Web App.

• #335: no longer relevant to Vonk since it runs on ASP.NET Core 2.2

Microsoft has published several newer Security Advisories regaring ASP.NET Core:

• #325: This is not applicable yet to Vonk, since it affects AspNetCoreModuleV2 and Vonk still works on Asp-
NetCoreModule (implicitly V1). We will upgrade to V2 shortly though, so we advise you to install the latest
AspNetCoreModulev2 anyway.

• #359: Not relevant to Vonk, it does not use SignalR.

30 Chapter 3. Release notes Firely Server

https://github.com/aspnet/Announcements/issues/416
https://dotnet.microsoft.com/download/dotnet-core/3.1
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2005-2224
https://github.com/aspnet/Announcements/issues/402
https://github.com/aspnet/Announcements/issues/403
https://dotnet.microsoft.com/download/dotnet-core/3.1
https://github.com/aspnet/Announcements/issues/405
https://dotnet.microsoft.com/download#/runtime/
https://github.com/aspnet/Announcements/issues/334
https://github.com/aspnet/Announcements/issues/373
https://github.com/aspnet/Announcements/issues/384
https://github.com/aspnet/Announcements/issues/385
https://github.com/aspnet/Announcements/issues/295
https://github.com/aspnet/Announcements/issues/335
https://github.com/aspnet/Announcements/issues/352
https://github.com/aspnet/Announcements/issues/359

Firely Server

3.2.4 January 2019

Microsoft has published two Security Advisories regarding ASP.NET Core:

• If you run Vonk behind Internet Information Server (IIS), you may be vulnerable to “Microsoft Security Advisory
CVE-2019-0548: ASP.NET Core Denial Of Service Vulnerability”. Refer to the related Github issue #335 for
details and the fix.

• When using older versions of some of the ASP.NET Core packages you may be vulnerable to “Microsoft Security
Advisory CVE-2019-0564: ASP.NET Core Denial of Service Vulnerability”. Refer to the related Github issue
#334 for details. Vonk FHIR Server up until version 1.1.0 uses versions of the packages involved that are not
affected (older than the vulnerable versions). In a future version we will upgrade beyond the vulnerable version
upto secure versions. No action is required by the administrator of Vonk.

3.2.5 April 2018

Microsoft has published two Security Advisories regarding ASP.NET Core:

• If you run Vonk behind Internet Information Server (IIS), you may be affected by “Microsoft Security Advisory
CVE-2018-0808: ASP.NET Core Denial Of Service Vulnerability”. Refer to the related GitHub issue #294 for
details and the fix.

• If you expose Vonk directly to the internet, or host it behind a proxy which does not validate or restict host headers
to known good values, you may be affected by “Microsoft Security Advisory CVE-2018-0787: ASP.NET Core
Elevation Of Privilege Vulnerability”. Refer to the related GitHub issue #295 for details and the correct way of
hosting Vonk. This ‘host validating middleware’ mentioned by this issue is not a part of Vonk. We advise you
to run a publicly exposed Vonk behind a proxy or on an Azure Web App.

3.3 Upgrading Firely Server

See How to upgrade Firely Server? for information on how to upgrade to a new version of Firely Server.

3.4 Public Endpoint Announcement 8 July 2021

The default FHIR version of the public Firely Server endpoint is now R4.

3.5 Release 4.9.2, August 24th, 2022

3.5.1 Fix

1. Starting with Firely Server v4.9.0, validation was only performed against the core specification even if the vali-
dation level was set to “Full” and resources sent to Firely Server contained a meta.profile claim.

3.3. Upgrading Firely Server 31

https://github.com/aspnet/Announcements/issues/335
https://github.com/aspnet/Announcements/issues/334
https://github.com/aspnet/Announcements/issues/334
https://github.com/aspnet/Announcements/issues/294
https://github.com/aspnet/Announcements/issues/295
https://server.fire.ly/

Firely Server

3.6 Release 4.9.1, August 1th, 2022

3.6.1 Fix

1. Fixed an issue with _include and _revinclude in case the (rev-)include link was pointing to an element of type
“canonical” and not of type “reference”.

2. “_total” was added as default parameter in the v4.9.0 release. Therefore it must be handled in a facade imple-
mentation. The Vonk.Facade.Relational package now handles the case of “_total=accurate”. All other argument
values must still be handled in the ISearchRepository implementation.

3. Reading the specification.zip file from a read-only disk caused an exception.

4. Excluding the UrlMappingService from the pipeline configuration and executing a CRUD operation caused an
exception.

3.6.2 Feature

1. The exposed SMART capabilities in the .well-known/smart-configuration can now be configured in the appset-
tings. See SmartAuthorizationOptions.SmartCapabilities in section SMART Configuration.

3.7 Release 4.9.0, July 6th, 2022

3.7.1 Security

1. Upgraded Microsoft.AspNetCore.Authentication.JwtBearer dependency as a mitigation for CVE-2021-34532.

3.7.2 Database

1. Switched the serialization format for decimal types from string to the native decimal type in MongoDB to improve
performance.

2. For SQL Server database, if you upgrade Firely Server all the way from v4.2.1, it is likely that the resulting
index vonk.ref.ref_name_relativereference differ from a clean installation of Firely Server. The upgrade
procedure will try to fix the index automatically. If your database is large, this may take too long and the upgrade
process will time out. If that happens you need to run the upgrade script manually. The script for the admin
database can be found in sqlserver/FS_SchemaUpgrade_Admin_v22_v23.sql and the script for the data
database can be found in sqlserver/FS_SchemaUpgrade_Data_v23_v24.sql.

Attention:
The upgrade procedure for Firely Server running on MongoDb requires a mandatory migra-
tion. If your collection contains a lot of resources, this may take a very long time. There-
fore, the MongoDb upgrade script has to be executed manually. The script can be found in mon-
godbFS_SchemaUpgrade_Data_v21_v22.js

Here are some guidelines:

• We tested it on a MongoDb collection with a size of 500GB. The upgrade script took around 24 hours to
complete on a fairly powerful machine.

32 Chapter 3. Release notes Firely Server

http://hl7.org/fhir/smart-app-launch/conformance.html#capabilities
https://github.com/dotnet/aspnetcore/security/advisories/GHSA-q7cg-43mg-qp69

Firely Server

• As always, make sure you have a backup of your database that has been tried and tested before you begin the
upgrade.

• Please make sure that Firely Server is shutdown before you execute the script.

• If you encounter problems running the script, or need any assistance, please contact us.

3.7.3 Fix

1. Fixed an issue where a “/” was missing in the fullUrl of a “search” bundle in case an information model mapping
with mode “Path” was used.

2. Fixed an issue where a new resource id was not created when POST was used in a batch or transaction bundle
and a resource id was already provided.

3. An invalid system URI was provided by default in AuditEvent.source.observer.identifier. Now http://vonk.
fire.ly/fhir/sid/devices|firely-server is being used to identify Firely Server itself.

4. Adjusted the implementation of conditional create to match the description in https://jira.hl7.org/browse/
FHIR-31965.

5. Money.currency was not indexed correctly in FHIR R4. Please contact us if you are using the SearchParameters
“price-override” on ChargeItem or “totalgross” / “totalnet” on Invoice. A migration for these fields will be
provided upon request. Otherwise, please re-index these SearchParameters. See Re-indexing for new or changed
SearchParameters for more details.

6. Fixed an issue where bundles with conformance claims in meta.profile would have been validated against the
profile claims even if the validation level was only set to “Core”.

7. Validating a resource with an element containing only an extension and no value against validation level “Core”
will no longer result in an error.

8. SoF: Providing an invalid token to an unsecured operation does not lead to an HTTP 401 error status code. The
invalid token is now being ignored.

9. SoF: Fixed unauthorized issue when performing PATCH request with patient scope.

3.7.4 Feature

1. Inferno, the ONC test tool: Firely Server is updated to pass all the tests in the latest ONC test kit (version 2.2.1)!
Do you want a demo of this? Contact us.

2. Transactions, including rollbacks, are now fully supported when running Firely Server on MongoDB. Please
note that the SimulateTransaction setting is no longer available. See MongoDB Transactions for more details.

3. $lastN is now available if Firely Server is running on MongoDB. See $lastN Observations for more details.

4. It is now possible to define exclusion criteria in the appsettings to configure which requests against Firely Server
should not be audited. In certain cases, this can reduce the number of captured AuditEvent resources. See
Auditing for more details.

5. By default, the AuditEvent logging will now include the query parameters sent to Firely Server. These parameters
will also be stored in case a request fails (HTTP 4xx or 5xx).

6. The log sinks for AuditEvent logging are now configurable in the logsettings. See Audit log file configuration
for more details.

7. Firely Server will throw a startup exception if no default ITerminologyService is registered.

3.7. Release 4.9.0, July 6th, 2022 33

https://jira.hl7.org/browse/FHIR-31965
https://jira.hl7.org/browse/FHIR-31965

Firely Server

8. CapabilityStatement.rest.resource.conditionalRead is now set to ‘full-support’ by default.

9. _total is now included in every self-link of a “search” bundle by default.

10. Added support for permanently deleting resources from the database. See $erase resources for more details. You
will need an updated license file. Please contact us if you want to use the feature.

11. Improved the error message in case the JSON serialization format of a FHIR resource does not contain a valid
“resourceType” Element.

12. Improved validation in case a non-conformant URI is given in Quantity.system. It MUST be a valid absolute
URI. In all other cases, a warning will be logged and the element will not be indexed.

13. Improved error message logging in case SQL script fails when the database upgrade is performed automatically
by Firely Server.

14. Improved log message in case Firely Server SQL schema needs to be updated by adding the current schema
version and the target schema version.

15. Improved access control by no longer allowing retrieval of resources outside of the Patient compartment if
SMART on FHIR is enabled and patient-level scopes are provided by the client. Additional resources need
to be explicitly allowed by the token.

16. Improved error message in case a condition create/update/delete operation is executed with SMART on FHIR
enabled and the client provides a token with limited permissions (e.g. only write-scopes).

3.7.5 Performance

1. Improved validation performance of large resources. Firely Server will now execute the validation of bundles in
a linear amount of time depending on the number of resources in the bundle.

2. Improved performance for chained searches in case SMART on FHIR is enabled.

3.8 Release 4.8.2, May 10th, 2022

3.8.1 Feature

1. A new setting has been introduced in the “Hosting” settings to configure path base. Please check Firely Server
settings page for details.

3.8.2 Fix

1. US-Core profiles in conformance resources database vonkadmin.db are downgraded from version 4.0.0 to 3.1.1.
The upgrade in previous Firely Server was unintentional.

2. CapabilityStatement is cached now based on the absolute request url. With this fix, CapabilityStatement can be
properly cached when a request contains X-Forwarded-* headers.

3. For MongoDB repository, set allowDiskUse to true when using aggregate command. This fix solves memory
restriction error during aggregation stages (See MongoDB document for details).

34 Chapter 3. Release notes Firely Server

https://docs.fire.ly/projects/Firely-Server/en/latest/configuration/appsettings.html#http-and-https
https://docs.fire.ly/projects/Firely-Server/en/latest/configuration/appsettings.html#http-and-https
http://hl7.org/fhir/us/core/
http://hl7.org/fhir/us/core/STU3.1.1/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Forwarded
https://www.mongodb.com/docs/manual/reference/command/aggregate/#command-fields

Firely Server

3.9 Release 4.8.1, Mar 5th, 2022

3.9.1 Plugins

1. Upgraded the .NET SDK to 3.8.2. Please review its release notes for changes.

3.9.2 Feature

1. A new option to configure settings regarding TLS client certificates has been introduced in the “Hosting” options.
This option allows to set the ClientCertificateMode.

2. Validation of transaction/batch bundles has been enabled by default when posting the resources to the transaction
endpoint of Firely Server. Please note that the transaction is executed synchronously. To avoid client timeouts,
the default value for the MaxBatchEntries (SizeLimits options) has been reduced to 200.

3.10 Release 4.8.0, Mar 21st, 2022

3.10.1 Plugins

1. Upgraded the .NET SDK to 3.8.0. Please review its release notes for changes.

3.10.2 Database

1. SQL Server

1. Reduced database size by compressing the resource JSON.

Attention: This change requires a complex SQL migration which can be long if you have many resources.
To estimate how long it will take for you, you can try running the migration for a subset of your data. The
overall migration time will grow linearly with the number of resources in the database.

For our test database containing ~185mln FHIR resources, the migration took approximately 1.5 days.

If you have questions about the migration, please contact us.

3.10.3 Performance

1. Improved performance for update, _include/_revinclude and conditional create interactions

3.9. Release 4.8.1, Mar 5th, 2022 35

https://github.com/FirelyTeam/firely-net-sdk/releases
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/endpoints?view=aspnetcore-6.0#client-certificates
https://github.com/FirelyTeam/firely-net-sdk/releases

Firely Server

3.10.4 Feature

1. You can now control the inclusion of the fhirVersion mimetype parameter in the Content-Type header of the
response. See Running different versions on different endpoints. We chose to change the default for FHIR STU3
to not include it as this parameter was introduced with FHIR R4.

3.10.5 Fix

1. Fixed exception by improving transaction handling when updating and deleting the same resource in parallel.

2. Use correct restful interaction codes in AuditEvent.subtype when recording a request to Firely Server

3. AuditEvent.action contained the wrong code when recording a SEARCH interaction

4. The name of a custom operation is now recorded in an AuditEvent

5. Fixed searching using the :identifier modifier in case the identifier system is not a valid URL

6. Searching using a If-None-Exist header was not scoped to an information model, i.e. a request using FHIR R4
also matched STU3 resources

7. Improved error message if $lastN operation is enabled but the corresponding repository is not included in the
pipeline options

8. Changed CapabilityStatement.software.name to Firely Server

9. Fixed SQL Server maintenance job timeouts on large SQL Server databases

10. Improved Bundle reference resolving in some corner cases, which are clarified in the this HL7 Jira issue

3.10.6 Security

1. According to the best practices of docker, Firely Server container runs now under the user and group
firely:firely instead of running under root privileges.

3.11 Release 4.7.1, Feb 15th, 2022

3.11.1 Fix

1. An invalid CapabilityStatement was created by Firely Server in case a custom SearchParameter overwriting a
common SearchParameter was loaded, e.g. “_id”. CapabilityStatement.rest.resource.searchParam.
definition contains now the canonical of the more specific SearchParameter.

2. The default CapabilityStatement contained an invalid canonical in the .url element.

3. Enforce referential integrity for the elements “Composition.patient” and “Composition.encounter” when sub-
mitting a document bundle to the base endpoint. The corresponding resources need to be already present on the
server (matching based on identifier), otherwise the bundle is rejected.

36 Chapter 3. Release notes Firely Server

https://jira.hl7.org/browse/FHIR-29271
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#user

Firely Server

3.12 Release 4.7.0, Feb 1st, 2022

Attention: With version 4.7.0, Firely Server migrated to .NET 6.0. In order to run the binaries, ASP.NET Core
Runtime 6.x needs to be installed.

3.12.1 Feature

1. BulkDataExport is now supported for MongoDB as well. Get started with the Bulk Data Export documentation.

2. Circular references in transaction bundles are now supported. Bundles of type transaction and batch are
permitted to contain resources referencing another resource within the same bundle. This also means that you
can now cross reference PUT and POST entries.

3. An option to configure additional token issuers is now available. This is used in settings where the token issuer de-
viates from the token audience. This new setting replaces the existing AdditionalEndpointBaseAddresses.
The setting needs to be adjusted manually as it will not be migrated automatically. Please check the configuration
documentation on how to use it.

4. Firely Server now supports receiving document bundles on the base endpoint. Firely Server will extract the
narrative of document bundles and store this within a DocumentReference resource. Read more about it in the
documentation.

5. Added support for transforming SMART scopes issued by Azure Active Directory documentation.

6. Firely Server will now recognize the name claim in JSON Web Tokens and also include its content in the logs.

7. It is now possible to provide the Firely Server license via an environment variable.

3.12.2 Plugins

1. BulkDataExport interfaces were made publicly available in order to provide these to Firely Server’s facade im-
plementers. The Bulk Data Export page now has a section on BDE for facades.

2. Upgraded the .NET SDK to 3.7.0. Please review its release notes for changes.

3.12.3 Logging improvements

1. Error messages including information about authorization validation and authentication requests are now en-
riched with user information if ShowAuthorizationPII is enabled in the configuration.

2. Authorization/Authentication logging messages are now enriched with more information when logging level for
the namespace Vonk.Smart is set to Debug.

3. In case SSL is activated, but the .pfx file configured in CertificateFile could not be found, Firely Server
will now log this error more explicitly.

3.12. Release 4.7.0, Feb 1st, 2022 37

https://dotnet.microsoft.com/en-us/download/dotnet/6.0
https://dotnet.microsoft.com/en-us/download/dotnet/6.0
https://github.com/FirelyTeam/firely-net-sdk/releases

Firely Server

3.12.4 Fix

1. Fixed a bug where newly created SQL connections were not closed properly with the raw SQL configuration.

2. Fixed a bug that prevented searching on the ContactPoint datatype with a query of type system|value. Although
this combination is disallowed by the FHIR specification, Firely Server still allows it. We do not provide a
migration for this issue. Please Contact us if this is an issue for you.

3. Fixed a bug that returned invalid self links without escaped whitespaces in bundles.

4. Improved support for use of Firely Server with Azure SQL.

3.12.5 Other

1. Firely Server will no longer support CosmosDb starting with version 4.7.0.

2. The Docker image name has changed from simplifier/vonk to firely/server. The old image name will be main-
tained for a few months to allow for a smooth transition. When updating to version 4.7.0, you should start to use
the new image name. Versions 4.6.2 and older will stay available (only) on ‘simplifier/vonk’.

3.13 Release 4.6.2, Dec 23rd, 2021

3.13.1 Fix

1. IConformanceCacheR3 and IConformanceCacheR4 are registered again in the ServiceProvider for plugins
that still make use of them. Note that these interfaces are obsolete by now, so make sure you don’t use them for
any new plugins.

3.14 Release 4.6.1, Dec 15th, 2021

3.14.1 Fix

1. Improved handling of TypeLoadException and ReflectionTypeLoadException when scanning external assemblies
for SerializationSupportAttribute attributes.

3.15 Release 4.6.0, Nov 18th, 2021

3.15.1 Database

1. SQL Server (all changes below applicable only when plugin Vonk.Repository.Sql.Raw is enabled)

1. A new computed column IsDeleted on table [vonk].[entry] is leveraged for more performant SQL queries

Note: The performance of the old Vonk.Repository.Sql may be adversely impacted by this change. We
encourage you to use the new Vonk.Repository.Sql.Raw implementation.

2. Improved performance of SQL queries by converting 5 columns from [vonk].[entry] to varchar upon re-
trieval: InformationModel, Type, ResourceId, Version, Reference

38 Chapter 3. Release notes Firely Server

https://hub.docker.com/repository/docker/simplifier/vonk
https://hub.docker.com/r/firely/server

Firely Server

Note: These columns should - by definition of the FHIR datatypes - not contain characters outside the varchar
range, but please pay attention to this change if your id’s or custom resource type has those characters nonetheless.
We may alter the datatype of the columns in a future release.

3. Improved performance of some SQL queries by avoiding unnecessary SQL query parameter type conver-
sion

4. Improved performance of some SQL queries by avoiding excessive retrieval of the (large) ResourceJson
column

2. MongoDB

1. Improved performance of searches within a compartment

2. Added an index ix_sysinfo to quickly retrieve the VonkVersion document.

3.15.2 Features

1. Added support for SMART on FHIR v2

Note: Since most users currently use SMART on FHIR v1, the plugin for v2 is by default disabled in the PipelineOp-
tions. You can switch v1 out and v2 in when you want to test the use of v2.

3.15.3 Logging improvements

1. The password and the username are stripped out from a connection string when it gets logged (SQL Server /
Sqlite, Verbose log level)

2. SQL param values are not logged by default. This can be enabled by using a new config setting. See SQL query
parameter logging (SQL Server / Sqlite, Verbose log level)

3. Username and UserId are included in log and audit entries (when using SoF or another authentication plugin)

4. SQL query duration now gets logged (changed for Vonk.Repository.Sql.Raw.KSearchConfiguration plu-
gin; was always available for other repository plugins, Verbose log level)

5. Fixed category names for some log entries to include the fully qualified type of their source. For example,
category MetadataConfiguration was changed to Vonk.Core.Metadata.MetadataConfiguration,
and category BulkDataExportConfiguration was changed to Vonk.Plugin.BulkDataExport.
BulkDataExportConfiguration, etc.

3.15.4 Fix

1. Fixed a bug when validation was not performed on PATCH requests even when the validation level was set to
Full

2. Fixed a bug when escaping of the pipe (‘|’) character was not working as expected for token search parameters

3. Improved error handling when FS tries to load a non-.NET DLL from the plugins directory

4. Fixed a bug (introduced in 4.5.1) when a compartment matches more than 1 Patient

5. Fix: $validate checks whether a system parameter is provided

6. Fix: Vonk.Repository.Sql.Raw: searching on quantities with values having a high precision failed

3.15. Release 4.6.0, Nov 18th, 2021 39

Firely Server

3.15.5 Other

1. Firely SDK upgraded from v3.0.0 to v3.6.0. See the SDK release notes here

Note: This will make Firely Server import a new version of specification.zip into the Administration endpoint for each
FHIR version. If you share the Administration database among instances, allow 1 instance to finish this process before
starting the other instances.

3.16 Release 4.5.1

Attention:
The upgrade procedure for Firely Server running on MongoDb will execute an upgrade script that adds
a new field to store precalculated compartment links. If your collection contains a lot of resources, this
may take a very long time. Therefore, the MongoDb upgrade script has to be executed manually. The
script can be found in mongodbFS_SchemaUpgrade_Data_v17_v18.js

Here are some guidelines:

• We tested it on a MongoDb collection with about 400k documents in total. The upgrade script took around
3.5 minutes to complete on a fairly powerful laptop.

• As always, make sure you have a backup of your database that has been tried and tested before you begin the
upgrade.

• Please make sure that Firely Server is shutdown before you execute the script.

• If you encounter problems running the script, or need any assistance, please Contact us.

3.16.1 Database

1. MongoDB

1. The migration script ‘FS_SchemaUpgrade_Data_v17_v18.js’ has been fixed. All data present in the
database before the migration is now again accessible after the migration.

2. SQL Server

1. Improved the query performance when using _include by using “WITH FORCESEEK”.

2. Improved performance by avoiding scanning indexes when searching on the UriHash column

3.16.2 Fix

1. Firely Server will now by default include a user-agent header when retrieving the SMART Discovery document

40 Chapter 3. Release notes Firely Server

https://github.com/FirelyTeam/firely-net-sdk/releases

Firely Server

3.17 Release 4.5.0

3.17.1 Database

Attention: The release version of the MongoDB migration contains an error causing compartment searches to
return no search results for all migrated resources. Only newly added resources after the migration will be returned
successfully. In Release 4.5.1 we have fixed this issue, so please use that version instead.

1. MongoDB

1. To improve the performance of compartment searches, Firely Server now precalculates the compart-
ment links to which a resource belongs on insert in the database. An external migration script
‘FS_SchemaUpgrade_Data_v17_v18.js’ is provided in the distribution. It needs to be applied manually
using MongoDB Shell.

3.17.2 Security

1. A VonkConfigurationException, which was thrown if a SQL database migration could not be performed, in-
cluded the SQL connection string in plain text in the log. Please check you log files if they include any sensitive
information such as the database password, which might have been part of the connection string.

3.17.3 Fix

1. It is now possible to configure pre- and post-handlers for a custom operations using VonkInteraction.all_custom
regardless of the interaction level of the operation handler and the interaction level on which the operation is
configured in the appsettings.

2. $lastN could not handle chained arguments on the subject/patient reference

3. $lastN reported an invalid error message if the reference to a subject/patient was provided as an urn:uuid reference

4. $lastN search result bundles were missing self-links when no results were found

5. Disabling Vonk.Fhir.R4 in the pipeline resulted in an internal exception thrown by the ConformanceCache

3.17.4 Feature

1. $lastN can be combined with _elements and _include parameters

2. $lastN can group the results by the component-code or combo-code search parameter

3.17.5 Documentation

1. Added an explanation to the documentation why the use of _total=none influences the performance of a search
query.

3.17. Release 4.5.0 41

urn:uuid

Firely Server

3.17.6 Plugins

1. The FHIR Mapper is no longer distributed together with Firely Server. Please contact fhir@healex.systems for
any questions regarding the FHIR Mapper.

2. The packages Vonk.Fhir.R(3|4) depended on an unpublished NuGET package Vonk.Administration.Api.

3. All classes in the namespace ‘Vonk.Facade.Relational’ are now published on GitHub.

3.18 Release 4.5.0-beta

3.18.1 Fix

1. Security: Added a warning to the documentation that using compartments other than ‘Patient’ to restrict access
based on patient-level SMART on FHIR scopes may result in undesired behavior. See Compartments for more
information.

2. The RequestCountService caused an exception on startup if the RequestInfoFile could not be accessed, e.g. due
to limited filesystem permissions. The RequestCountService has been removed completely. Any remaining
.vonk-request-info.json files can be deleted manually.

3. The logsettings for SQL server included an outdated configuration.

4. The logsettings for MongoDB included an outdated configuration.

3.18.2 Feature

1. Improved error messages if an internal exception occurred due to failing filesystem access.

2. The $lastN operation is now available when using SQL Server as the backend for Firely Server. See $lastN
Observations for more information.

3.18.3 Plugin and Facade

1. Added async support for the ISnapshotGenerator interface and its implementations.

3.19 Release 4.4.0

3.19.1 Database

1. MongoDB

1. To improve the performance of deletes, the definition of the index ix_container_id is redefined. Firely
Server 4.4.0 will automatically change the definition.

2. SQL Server

1. Improved query behind _include to leverage an index. No changes to the database schema involved. This
only affects the new implementation (available since 4.3.0).

42 Chapter 3. Release notes Firely Server

mailto:fhir@healex.systems
https://github.com/FirelyTeam/Vonk.Facade.Relational
https://www.hl7.org/fhir/observation-operation-lastn.html

Firely Server

3.19.2 Fix

1. Improved automatic upgrading of terminology settings from pre-4.1.0 instances.

2. Added CapabilityStatement.status for R4

3. The default SmartAuthorizationOptions in appsettings.default.json only have the Filter for ‘Patient’
enabled. The rest is now commented out as those are generally not used.

3.19.3 Plugin and Facade

1. The interfaces PrioritizedResourceResolver(R3|R4|R5) and their implementations are no longer available. It is
advised to construct your own StructureDefinitionSummaryProvider incl. a MultiResolver combining your own
resource resolver and the IConformanceCache provided by Firely Server.

2. The interface IConformanceCacheInvalidation has been moved from Vonk.Core.Import to
Vonk.Core.Conformance

3. The classes SpecificationZipResolver(R3|R4|R5) are no longer available. Please use the IPrioritizedResourceRe-
solvers instead.

4. Starting from this version, a Facade should not have an order greater than or equal to 211. The reason for
this is that upon configuring the administration database, Firely Server checks whether an ISearchRepository is
registered. The earliest of these configurations is at order 211.

3.20 Release 4.3.0

3.20.1 Database

1. SQL Server

1. To improve the performance of searching we have rewritten a large part of our SQL Server implementation.
To be able to use the new implementation go to section PipelineOptions in appsettings.default.json
(or appsettings.instance.json if you have overridden the default pipeline options) and add "Vonk.
Repository.Sql.Raw.KSearchConfiguration". See Using SQL server for more details.

2. We have identified two indexes that needed a fix to increase query performance for certain searches. The
upgrade procedure will try to fix these indexes automatically. If your database is large, this may take too
long and the upgrade process will time out. If that happens you need to run the upgrade script manually, The
script can be found in sqlserver/FS_SchemaUpgrade_Data_v19_v20.sql. If you use SQL Server as
your Administration database, Firely Server will try to update it automatically as well. If you prefer a manual
update, you can run the following script: sqlserver/FS_SchemaUpgrade_Admin_v18_v19.sql.

3.20.2 Feature

1. Firely Server now allows you to execute a ValueSet expansion of large ValueSets (> 500 included concepts).
Previously, Firely Server would log an error outlining that the expansion was not possible. The appsettings now
contain a setting in the Terminology section allowing to select the MaxExpansionSize. See Options for more
details.

3.20. Release 4.3.0 43

Firely Server

3.20.3 Fix

1. Fixed a NullPointerException which occurred when indexing UCUM quantities that contained more than one
annotation (e.g. “{reads}/{base}”).

2. Fixed a bug where it was possible to accidentally delete a resource with a different information model then the
request. Firely Server will now check the information model of the request against the information model of the
resource for conditional delete and delete requests.

3. $subsumes returned HTTP 501 - Not implemented for a POST request (instance-level) even if the operation was
enabled in the appsettings.

4. The _type filter on $everything and Bulk data export didn’t allow for resources that are not within the Patient
compartment. The operations would return an empty result set.

5. Added a clarification to the documentation that $everything and Bulk data export do not export Device resources
by default. Even though the resource contains a reference to Patient, the corresponding compartment definition
for Patient does not include Device as a linked resource. It is possible to export Device resources by adding the
resource type to “AdditionalResources” settings of the operations.

3.21 Release 4.2.1 hotfix

3.21.1 Database

Note: We found an issue in version 4.2.0, which affects the query performance for Firely Server running on a SQL
Server database. If your are running FS v4.2.0 on SQL Server you should upgrade to v4.2.1 or if that is not possible,
Contact us.

Attention:
The upgrade procedure will execute a SQL script try to validate the foreign key constraints.
If your database is large, this may take too long and the upgrade process will time out. If
that happens you need to run the upgrade script manually, The script can be found in data/
20210720085032_EnableCheckConstraintForForeignKey.sql.

Here are some guidelines:

• We tested it on a database with about 15k Patient records, and 14 million resources in total. The upgrade
script took about 20 seconds to complete on a fairly powerful laptop.

• As always, make sure you have a backup of your database that has been tried and tested before you begin the
upgrade.

• If you expect the upgrade to time out, you can choose to run the SQL script manually beforehand. Please
make sure that Firely Server is shutdown before you execute the script.

44 Chapter 3. Release notes Firely Server

Firely Server

3.21.2 Fix

1. Fixed a bug where some of the Foreign Keys in SQL Server had become untrusted. This bug has an impact on the
query performance since the the SQL Server query optimizer will not consider FKs when they are not trusted.
This has been fixed, all Foreign Keys have been validated and are trusted again.

3.22 Release 4.2.0

3.22.1 Database

Attention: For SQL Server users: this version of Firely Server running on SQL Server has a bug where some
of the Foreign Keys became untrusted. This has an impact on the query performance. Please upgrade to version
4.2.1 or if that is not possible, Contact us. Please note that users running Firely Server running either MongoDb,
CosmoDb, or SQLite are not affected by this issue.

Attention: For SQL Server we changed the datatype of the primary keys. The related upgrade script (data/
20210519072216_ChangePrimaryKeyTypeFromIntToBigint.sql) can take a lot of time if you have many
resources loaded in your database. Therefore some guidelines:

• We tested it on a database with about 15k Patient records, and 14 mln resources in total. Migrating that took
about 50 minutes on a fairly powerful laptop.

• Absolutely make sure you create a backup of your database first.

• If you haven’t done so already, first upgrade to version 4.1.x.

• If you already expect the migration might time out, you can run it manually upfront. Shut down Firely Server,
so no other users are using the database, and then run the script from SQL Server Management Studio (or a
similar tool).

• Running the second script (20210520102224_ChangePrimaryKeyTypeFromIntToBigintBDE.sql) is
optional - that should also succeed when applied by the auto-migration.

3.22.2 Feature

1. Terminology operation $lookup is now also connected to remote terminology services, if enabled. See Termi-
nology services.

2. We provided a script to ‘purge’ data from a SQL Server database. See data/20210512_Purge.sql. You can
filter on the resource type only. Use with care and after a backup. If you need more elaborate support for hard
deletes, please Contact us.

3.22. Release 4.2.0 45

Firely Server

3.22.3 Fix

1. Firely Server could run out of primary keys on the index tables in SQL Server. Fixed by upgrading to bigint, see
warning above.

2. Nicer handling of SQL Server migration scripts that time out on startup. It will now kindly ask you to run the
related script manually if needed (usually depends on the size of your database).

3. The Patient-everything ($everything) operation was not mentioned in the CapabilityStatement.

4. License expired one day too early.

5. Dependencies have been upgraded to the latest versions compatible with .NET Core 3.1.

6. PATCH did not allow adding to a repeating element.

7. If your license does not allow usage of SMART on FHIR, authorization was disabled, emitting a warning in
the log. Possibly causing unauthorized access without the administrator noticing it. This specific case will now
block the startup of Firely Server.

3.23 Release 4.1.3 hotfix

3.23.1 Fix

1. Fixed a bug where a number of concurrent $transform requests on a freshly started Firely Server could lead to
Internal Server Error responses.

2. Upgraded the Mapping plugin.

3.24 Release 4.1.2 hotfix

3.24.1 Fix

1. Fixed a bug when trying to delete multiple resources at once (bulk delete, see Configuration for configuration
options). The operation would take a while and eventually return a 204 No Content without actually deleting
any resources. This is fixed, the bulk delete operation now deletes the resources.

3.25 Release 4.1.1 hotfix

3.25.1 Feature

1. SMART configuration: Some identity providers use multiple endpoints with different base addresses for its
authorization operations. Added an extra configuration option AdditionalEndpointBaseAddresses to define
additional base endpoints addresses next to the main authority endpoint to accommodate this. See Configuration
for further details.

46 Chapter 3. Release notes Firely Server

Firely Server

3.25.2 Fix

1. Fixed an error in SQL script data/20210226200007_UpdateIndexesTokenAndDatetime_Up.sql that is
used when manually updating the database to v4.1.0. We also made the script more robust by checking if the
current version the database is suitable for the manual upgrade.

3.26 Release 4.1.0

Attention: We have found an issue with SMART on FHIR and searching with _(rev)include. And fixed it right
away, see Fix nr 1 below. Your Firely Server might be affected if:

• you enabled SMART on FHIR

• and used patient/read.* scopes together with a patient compartment

What happens? Patient A searches Firely Server with a patient launch scope that limits him to his own compartment.
If any of the resources in his compartment links to another patient (let’s say for Observation X, the performer is
Patient B), Patient A could get to Patient B with <base>/Observation?_include=Observation.performer.
If you host Group or List resources on your server, a _revinclude on those might give access to other Patient resources
within the same Group or List.

If you think you might be affected you can:

• upgrade to version 4.1.0

• or if that is not possible, Contact us.

3.26.1 Database

1. SQL Server

1. A new index table was added. The upgrade procedure will try to fill this table based on existing data. If
your database is large, this may take too long and time out. Then you need to run the upgrade script found
in data/20210303100326_AddCompartmentComponentTable.sql manually.

2. A new SQL Server index was added to improve query times when searching with date param-
eters. The upgrade procedure will try to build this index. If your database is large, this
may take too long and time out. Then you need to run the upgrade script found in data/
20210226200007_UpdateIndexesTokenAndDatetime_Up.sql manually.

3. In both cases you may also run the script manually beforehand.

4. As always: make sure you have a backup of your database that is tested for restore as well.

3.26. Release 4.1.0 47

Firely Server

3.26.2 DevOps

Attention: Because of a change in the devops pipeline there is no longer a Firely.Server.exe (formerly Vonk.
Server.exe) in the distribution zip file. You can run the server as always with dotnet ./Firely.Server.dll

3.26.3 Features

1. Inferno, The ONC test tool: Firely Server now passes all the tests in this suite! With version 4.1.0 we specifically
added features to pass the ‘Multi-patient API’ tests. Do you want a demo of this? Contact us!.

2. Terminology support has been revamped. Previously you needed to choose between using the terminology ser-
vices internal to Firely Server or external terminology services like from OntoServer or Loinc. With this version
you can use both, and based on the codesystem or valueset involved the preferred terminology service is selected
and queried.

1. This works for terminology operations like $validate-code and $lookup

2. It also works for validation, both explicitly with $validate and implicitly, when validating resources sent
to Firely Server.

3. The CodeSystem, ValueSet and ConceptMap resources involved are conformance resources and therefore
always retrieved from the Administration database.

4. Responses may differ on details from previous versions of Firely Server, but still conform to the specifica-
tion.

5. See Terminology services for further details.

3. $everything: We now support the Patient $everything operation for single Patients. (For multiple patients,
there is the Bulk Data Export feature.)

4. Performance of $everything, Bulk Data Export and authorization on compartments improved. We added a special
index to the database that keeps track which resource belongs to which compartment. First in SQL Server,
MongoDB has less need for it.

5. SMART on FHIR: Support for token revocation. Reference tokens can be revoked, and Firely Server can check
for the revocation.

3.26.4 Fixes

1. SMART on FHIR: We have found ourselves that the authorization restrictions were bypassed when using _include
or _revinclude in a FHIR Search. We solved this security issue immediately.

2. Firely Server transparently translates absolute urls to relative urls (for internal storage) and back. There was a
performance gain to be made in this part, which we did. This is mostly notable on large transaction or batch
bundles.

3. Batch bundles are not allowed to have links between the resources in the entries. Firely Server will now reject
batch bundles that have these links. If you need links, use a transaction bundle instead.

48 Chapter 3. Release notes Firely Server

Firely Server

3.26.5 Plugin and Facade

1. We upgraded the Firely .NET SDK to version 3.0.0. This SDK version is almost fully compatible with 2.9, but it
brings significant simplifications to its use because the Parameters and OperationOutcome resource POCOs are
no longer FHIR-version specific.

Note: Every new version of the SDK brings new versions of the specification.zip files. So upon upgrade
these new files will be read into the Administration database. See Conformance Resources for more background.

3.27 Release 4.0.0

This major version introduces a new name: Firely Server instead of Vonk. Other than that, this release contains some
significant code changes, which could impact you if you run Firely Server with your own plugins.

3.27.1 Features

1. Name change Vonk -> Firely Server:

1. The main entry point dll (formerly: Vonk.Server.dll) and executable (formerly: Vonk.Server.exe)
names have been changed to Firely.Server.dll and Firely.Server.exe respectively.

2. The name was changed in the CapabilityStatement.name.

3. The name of the download zip (from Simplifier) has changed from vonk_distribution.zip to firely-server-
latest.zip. Likewise the versioned zip files have changed as well.

2. We have implemented FHIR Bulk Data Access ($export) to allow for fast, asynchronous ndjson data exports.
The Bulk Data Export documentation can help you to get started.

3. Firely Server now uses Firely .NET SDK 2.0.2 (formerly: FHIR .NET API)

Attention: If you are running Firely Server with your own self-made plugins, you will likely encounter
package versioning problems and need to upgrade your NuGet Firely Server package references (package
names starting with Vonk.) to version 4.0.0. You also need to upgrade any Firely .NET SDK package ref-
erences (package names starting with Hl7.Fhir.) to version 2.0.2. The Firely .NET SDK release notes and
Breaking changes in Firely SDK 2.0 can give you an idea of the changes you may encounter in the SDK.

4. SMART on FHIR can now recognize prefixes to the claims, see its Configuration.

5. The smart-configuration endpoint (<url>/.well-known/smart-configuration) relays the signature algorithms con-
figured in the authorization server.

3.27. Release 4.0.0 49

https://github.com/FirelyTeam/firely-net-sdk/releases/tag/v3.0.0-stu3
https://github.com/FirelyTeam/firely-net-sdk/releases
https://github.com/FirelyTeam/firely-net-sdk/wiki/Breaking-changes-in-2.0

Firely Server

3.27.2 Fixes

1. Application Insights has now been disabled by default. If you need Application Insights, you can enable it in
your log settings file by including the entire section mentioned in Application Insights log settings.

2. When validating a resource, a non-existing code would lead to an OperationOutcome.issue with the code
code-invalid. That issue code has been changed to not-supported.

3. On a batch or transaction bundle errors were not reported clearly if the entry in error had no fullUrl element. We
fixed this by referring to the index of the entry in the entry array, and the resource type of the resource in the
entry (if any).

4. The import[.R4] folder allows for importing custom StructureDefinition resources. If any of them had no id,
the error on that caused an exception. Fixed that.

5. If a Facade returned a resource without an id from the Create method, an error was caused by a log statement.
Fixed that.

6. Indexing Subscription.channel[0].endpoint[0] failed for R4. Fixed that. This means you can’t search
for existing Subscriptions by Subscription.url on the /administration endpoint for FHIR R4.

7. Postman was updated w.r.t. acquiring tokens. We adjusted the documentation on that accordingly.

8. If a patient claim was included in a SMART on FHIR access token, the request would be scoped to the Patient
compartment regardless of the scope claims. We fixed this by allowing “user” scopes to access FHIR resources
outside of the Patient compartment regardless of the patient claim. See Launch context arrives with your ac-
cess_token for more background information.

3.27.3 Plugin and Facade

1. The mapping plugin is upgraded to the Mapping Engine 0.6.0.

2. As announced in Release 3.0.0 we removed support for creating a Facade as a standalone ASP.Net Core project.
You can now only build a Facade as a plugin to Firely Server. See Firely Server Facade on how to do that.

3. The order of some plugins has changed. This way it is possible to add a plugin between PreValidation and
UrlMapping:

• UrlMapping: from 1230 to 1235

• Prevalidation: from 4320 to 1228

4. A Facade based on Vonk.Facade.Relational no longer defaults to STU3

Attention: If you developed a facade plugin based on Vonk.Facade.Relational, you need to over-
ride RelationalQueryFactory.EntryInformationModel(string informationModel) in your im-
plementation to allow the FHIR version you wish to target (see Deciding on a FHIR version)

5. We took the opportunity of a major version upgrade to clean up a list of items that had been declared Obsolete
already. Others have become obsolete now. This is the full list:

Obsolete, now deleted:

Vonk.Core.Common.DeletedResource # Vonk.Core.Common.IResource.Currency, Change and
Clone(), also in VonkResource. # Vonk.Core.Common.IResourceExtensions.ToIResource(this
ISourceNode original, ResourceChange change, ResourceCurrency cur-
rency = ResourceCurrency.Current) (the overload defaulting to STU3) #
Vonk.Core.Context.Guards.SupportedInteractionOptions.SupportsCustomOperationOnLevel()
Vonk.Core.Context.Internal.BatchOptions # Vonk.Core.Operations.Validation.ValidationOptions

50 Chapter 3. Release notes Firely Server

http://hl7.org/fhir/smart-app-launch/1.0.0/scopes-and-launch-context/index.html#launch-context-arrives-with-your-access_token
http://hl7.org/fhir/smart-app-launch/1.0.0/scopes-and-launch-context/index.html#launch-context-arrives-with-your-access_token

Firely Server

Vonk.Core.Pluggability.InteractionHandlerAttribute.Tag # Vonk.Core.Pluggability.ModelOptions #
Vonk.Core.Repository.SearchOptions.LatestOne # Vonk.Core.Support.LogHelpers.TryGetTelemetryClient,
both overloads. # Vonk.Core.Support.SpecificationZipLocator.ctor(IHostingEnvironment. . .) #
Vonk.Fhir.R3.IResourceVisitor + extensions # Vonk.Fhir.R3.Configuration.ModelContributorsFacadeConfiguration
Vonk.Fhir.R3.FhirExtensions.AsIResource() # Vonk.Fhir.R3.FhirPropertyIndex + FhirProp-
ertyInfo + FhirPropertyIndexBuilder # Vonk.Fhir.R3.IConformanceBuilder + BaseC-
onformanceBuilder + HarvestingConformanceBuilder + extensions + IConformance-
Contributor # Vonk.Fhir.R3.CompartmentDefinitionLoader + (I)SearchParameterLoader
Vonk.Fhir.R3.MetadataImportOptions + MetadataImportSet + ImportSource
Vonk.Fhir.R3.PocoResource + PocoResourceVisitor # Vonk.Core.InformationModelAttribute
(actually made internal)

Obsolete since this version:

Vonk.Core.Configuration.CoreConfiguration: allows for integrating Vonk components
in your own ASP.NET Web server, discouraged per 3.0 (see these releasenotes). #
Vonk.Fhir.R3.FhirR3FacadeConfiguration: see above.

3.28 Release 3.9.3 hotfix

Attention: We changed the behavior of resthook notifications on Subscriptions. See Fix nr 1 below.

3.28.1 Database

1. SQL Server: The migration that adds the indexes described in Release 3.9.2 hotfix might run longer than the
timeout period of 30 seconds. Therefore we added scripts to apply and revert this migration manually. If you
encounter the timeout during upgrade: shut down vonk, run the script using SQL Server Management Studio or
any similar tool, then start Vonk 3.9.3 again. In both scripts you only need to provide the database name for the
database that you want to upgrade. If you run your administration database on SQL Server you can but probably
do not need to run this script on it. The administration database is typically small enough to complete the script
within 30 seconds.

1. apply: <vonk-dir>/data/2021211113200_AddIndex_ForCountAndUpdateCurrent_Up.sql

2. revert: <vonk-dir>/data/2021211113200_AddIndex_ForCountAndUpdateCurrent_Down.sql

3.28.2 Fix

1. Subscriptions: A resthook notification was sent as a FHIR create operation, using POST. This was not compliant
with the specification that states it must be an update, using PUT. We changed the default behavior to align
with the specification. In order to avoid breaking changes in an existing deployments, you may set the new
setting SubscriptionEvaluatorOptions:SendRestHookAsCreate to true - that way Vonk will retain the
(incorrect) behavior from the previous versions.

3.28. Release 3.9.3 hotfix 51

Firely Server

3.29 Release 3.9.2 hotfix

3.29.1 Fix

All fixes are relevant to SQL Server only.

1. The 3.9.0 fix that “Improved the handling of concurrent updates on the same resource.” decreased the perfor-
mance of concurrent transaction handling. We implemented another solution that does not affect performance.

2. Improved read performance by adding an index.

3.30 Release 3.9.1 hotfix

3.30.1 Fix

1. Fixed a bug introduced with 3.9.0 were Vonk would throw the following exception on start-up
System.InvalidOperationException: Unable to resolve service for type 'Vonk.
Core.Conformance.IDefinitionProvider' while attempting to activate 'Vonk.Fhir.R3.
SnapshotGeneration.SnapshotGeneratorR3

2. Fixed a breaking change to public search API with the implementation of _total parameter. We had introduced
a new parameter to the Next method in ResultPage, effectively breaking backwards compatibility. This has been
fixed.

3.31 Release 3.9.0

3.31.1 Features

1. We have made Subscriptions more robust. See Subscriptions for details. In summary, if an evaluation of a
Subscription fails, Vonk will retry the evaluation periodically for a number amount of tries. You can control the
retry period and the maximum number of retries in the subscription settings:

• RetryPeriod is expressed in milliseconds. Default 30000 (30 sec).

• MaximumRetries is the maximum amount of times Vonk will retry to send the resources. Default 3 retries.

2. We have implemented the _total parameter for options none and accurate. Omitting the _total parameter
is equivalent to _total=accurate. If the total number of resources is not relevant, using _total=none in the
request results in better performance when searching.

3. It is no longer necessary for the :type parameter to always be provided to distinguish between multiple ref-
erence targets. The parameter does not need to be provided anymore when the search only applies to a single
target. For example: GET <base>/AllergyIntolerance?patient=xyzThe patient:Patient type param-
eter does not have to be supplied. The ‘patient’ search parameter on AllergyIntolerance has two possible targets.
It may reference either a Patient or a Group resource. However, the fhirpath statement that goes with it, selects
‘AllergyIntolerance.patient’, and that reference element may only target a Patient resource.

52 Chapter 3. Release notes Firely Server

Firely Server

3.31.2 Fixes

1. Indexing values for a string search parameter threw an exception when there was no value but only an extension.
This has been corrected.

2. We made the Provenance.target available as a revInclude Parameter in the CapabilityStatement. Previously,
Vonk did not account for the case that a reference is allowed to ANY resource type, which incorrectly resulted
in Provenance.target to not be shown in the CapabilityStatement.

All the following fixes are only relevant for SQL Server:

1. Improved the handling of concurrent updates on the same resource.

2. Upgraded the version of the SqlClient library to fix issues when running on Linux.

3. Fixed missing language libraries for SQL Server when running on Docker.

3.32 Release 3.8.0

3.32.1 Database

• We added an important note to the 3.6.0 release notes for MongoDb users.

• Because of the changes in searching for Quantities (feature 2 below), you will need to do a reindex in order to
make use of this. You may limit the reindex to only the search parameters of type ‘quantity’ that you actually use
(e.g. Observation.value-quantity).

3.32.2 Features

1. We upgraded the FHIR .NET API to 1.9, see the 1.9 releasenotes. This will trigger an automatic import of the
Conformance Resources at startup.

2. We upgraded the Fhir.Metrics library to 1.2. This allows for a more uniform search on Quantities (mainly under
the hood)

3. We upgraded the FHIR Mapping plugin to support the FHIR Mapper version 0.5.

4. The built-in terminology services now support the includeDesignations parameter.

5. The IVonkContext now lets you access the original HttpContext.

6. The CapabilityStatement now lists the profiles that are known to Vonk (in its Administration database) under
CapabilityStatement.rest.resource.supportedProfile (>= R4 only) and the base profile for a re-
source under CapabilityStatement.rest.resource.profile.

7. We extended the security extension on the CapabilityStatement to include the endpoints for register, manage,
introspect and revoke.

8. IAdministrationSearchRepository and IAdministrationChangeRepository interfaces are no publicly
available. Use with care.

3.32. Release 3.8.0 53

https://github.com/FirelyTeam/firely-net-sdk/releases
https://github.com/FirelyTeam/fhir.metrics

Firely Server

3.32.3 Fixes

1. If the server configured as authorization endpoint in the Smart setting is not reachable, Vonk will log a proper
error about that.

2. An error message for when a query argument has no value is improved.

3. When SMART-on-FHIR is enabled, and the received token contains a launch context, the _history operation
is no longer available. Because Vonk does not retain the search parameter index for historical resources, it
cannot guarantee that these resources fall within the launch context (at least not in a performant way). To avoid
information leakage we decided to disable this case altogether.

4. A Create interaction without an id in the resource, with SMART-on-FHIR enabled, resulted in an exception.

5. You can now escape the question mark ‘?’ in a query argument by prepending it with a backslash ‘'.

6. A Quantity search using ‘lt’ on MongoDb resulted in too many results.

3.33 Release 3.7.0

3.33.1 Database

Attention: To accommodate for feature #2 below there is an automatic migration carried out for SQL Server and
SQLite. This migration might take some time, so please test it first. For MongoDb, you will have to Rebuild the
whole search index. If this is not feasible for your database, please Contact us for assistance.

3.33.2 Features

1. Patch: We implemented FHIR Patch. You can now update a resource having only partial data for it. See Create,
read, update, patch, delete.

2. Search on accents and combined characters: we improved searching with and on accents and combined charac-
ters. Note the database change above.

3. API 1.7: We upgraded Vonk to use the FHIR .NET API 1.7, having its own releasenotes.

4. Security: The Docker image is now based on the Alpine image for .NET Core. This has far less security issues
than the Ubuntu image that we used before. The base image is aspnet:3.1-alpine:3.11 (newest version 3.12 has
an open bug related to SQLite).

5. Security: We revisited the list of security vulnerabilities, see Security notifications for Firely Server.

6. Administration: ConceptMaps are now imported at startup.

3.33.3 Fixes

1. Searching on _lastUpdated could be inaccurate when time zone differences are in play. We fixed that.

2. Search arguments for a quantity search weren’t allowed to be greater than 999.

54 Chapter 3. Release notes Firely Server

https://github.com/FirelyTeam/firely-net-sdk/releases/tag/v1.7.0-beta-may2020-r5

Firely Server

3.34 Release 3.6.1

3.34.1 Features

1. ConceptMap resources can be stored at the Administration endpoint, both through import and through the REST-
ful API .

Attention: Previous versions of Vonk did not include the ConceptMap resources in the import so they will currently
not be in your Administration database. If you run your Administration database on SQL Server or MongoDb and
want to use the ConceptMap resources from the spec, be sure to rerun the import of the specification resources. You
can force Vonk to do so by deleting the .vonk-import-history.json file from the ImportedDirectory (see the
settings under AdministrationImportOptions). If you use SQLite, you can simply use the pre-built ./data/
admin.db from the binaries.

3.34.2 Plugins

1. The FHIR Mapper plugin is upgraded to version 0.3.6.

2. The FHIR Mapper plugin now fully works on the Administration endpoint.

3.35 Release 3.6.0

3.35.1 Database

Attention: For MongoDb users: We implemented feature #1 below using the Aggregation Pipeline. This makes
an existing issue in MongoDb - SERVER-7568 <https://jira.mongodb.org/browse/SERVER-7568> - a more urgent
problem. MongoDb has solved this problem in version 4.4. Therefore we advise you to upgrade to MongoDb 4.4.

3.35.2 Feature

1. Sort: The sorting that was implemented for the SQL/SQLite repositories in the previous version is now also
implemented for MongoDb.

2. Terminology: The local terminology service, built in to the Vonk Administration API, is upgraded to support R4
and R5 (and still R3 of course).

3. Vonk can now index and search on search parameters that reference a nested resource, like Bundle.message.

Attention: Note that any nested resources have to be indexed by Vonk. For new data that is done automati-
cally. But if you want to use this on existing data, you have to reindex for the search parameters you want to
use it on. Those will most notably be Bundle.message and Bundle.composition.

4. If you accidentally provide a body in a GET or DELETE request, Vonk will now ignore that body instead of
returning an error.

3.34. Release 3.6.1 55

Firely Server

3.35.3 Fix

1. CapabilityStatement (rev)includes now use ‘:’ as a separator instead of ‘.’.

3.35.4 Plugins

1. The BinaryWrapper plugin is upgraded to 0.3.1, where the included BinaryEncodeService is made more reusable
for other plugins (most notably the FHIR mapper).

3.36 Release 3.5.0

3.36.1 Feature

1. Search reference by identifier: FHIR R4 allows you to search a reference by its identifier. We added support for
this in Vonk. Note that any identifiers in reference elements have to be indexed by Vonk. For new data that is
done automatically. But if you want to use this on existing data, you have to reindex for the search parameters
you want to use it on. E.g. Observation.patient.

2. AuditEvent logging: In release 3.3.0 we already added support for logging audit information to a file. With this
release we add to that logging that same information in AuditEvent resources. These resources are written to the
Vonk Data database (not the Administration database). Users are not allowed to update or delete these resources.
See Auditing for more background.

3. Audit logging: We added [Request] or [Response] to the log lines so you can distinguish them better.

4. Sort: We started implementing sorting. This release provides sorting for search parameters of the types string,
number, uri, reference, datetime and token, on the repositories SQL, SQLite and Memory. On the roadmap is
extending this support to MongoDb and to quantity search parameters.

5. Terminology Integration: You can configure Vonk to route the terminology operations to external terminology
servers. You can even configure a preferred server for certain code systems like LOINC or Snomed-CT. On the
roadmap is to also allow you to use these servers for validation of codes and for token searches.

6. We implemented $meta-delete, see Meta plugins.

7. Loading plugins can lead to unexpected errors. We made the process and the log friendlier, so you can spot
configuration errors more easily:

• The log outputs the version of each of the plugins

• If a duplicate .dll file is found, Vonk tells you which two dlls are causing this and then exits.

• If you configured a plugin that you are not licensed to use, this is logged with a friendly hint to acquire a
license that does allow you to use it.

8. The log is now by default configured to use asynchronous logging so Vonk is not limited by the speed of the
logging sinks (like the Console and the log file). Please update your logsettings.instance.json if you created your
own log settings in that. See Log settings for more background.

56 Chapter 3. Release notes Firely Server

http://hl7.org/fhir/R4/search.html#reference
http://hl7.org/fhir/R4/resource-operation-meta-delete.html

Firely Server

3.36.2 Fix

1. You could load invalid XML in the Resource.text through a JSON payload. When that resource was then retrieved
in XML, it would fail with an InternalServerError. Vonk will now return an OperationOutcome telling you what
the problem is. You can then correct it by using JSON.

2. Composite search parameters were not parsed correctly. Now they are. So you don’t see warn-
ings like Composite SearchParameter 'CodeSystem.context-type-quantity' doesn't have
components. anymore.

3. Indexing for the _profile search parameter was broken for R4 since Vonk 3.2.1. We fixed it. If you added new
resources with Vonk 3.2.1 - 3.4.0, you need to reindex for the Resource._profile parameter.

4. Audit log: %temp% in the path setting was evaluated as <current directory>\%temp%. Fixed that to evaluate
to the systems temporary directory.

5. The logsettings.json configured the Serilog RollingFile sink by default. That is deprecated, so we replaced it
with the File sink.

6. Rebuild the search index for specific searchparameters now returns an error if you forget to actually specify a
search parameter.

7. An InternalServerError was returned when you validate a resource that is syntactically incorrect. Like a Patient
with multiple id’s. Vonk now returns an OperationOutcome with the actual problem.

8. The configuration for the FHIR Mapper was simplified. You only need to include Vonk.Plugin.Mapping.
Check appsettings.default.json for the new pipeline.

9. Maybe you got accustomed to ignoring a list of warnings at startup of Vonk. We cleaned up the list so that if
there is a warning, it is worthwhile investigating the cause of it.

10. The appsettings and logsettings can contain relative file paths for several settings, like the
License:LicenseFile. These were evaluated against the current working directory, but that could lead
to problems if that was not the Vonk directory. We solved that: all relative paths are evaluated against the Vonk
directory.

11. The docker image for version 3.4.0 was tagged 3.4.0-. With 3.5.0 we removed the superfluous hyphen at the
end.

12. We updated the documentation on Using Firely Server on Docker on SQL Server to be clearer about the order
of the steps to take.

13. We updated the documentation on Firely Server Plugin example - Create a new landing page to match .NET
Core 3.1.

3.36.3 Plugins & Facade

1. FHIR Mapper

• Has been upgraded to version 0.3.4.

3.36. Release 3.5.0 57

Firely Server

3.37 Release 3.4.0

3.37.1 Feature

1. Upgraded to FHIR .NET API 1.6.0, that features a couple of changes for working with CDA logical models. See
the release notes of the API.

2. Included the FHIR Mapper in the distribution. It is only enabled however when you include the mapping plugin
in your license.

3.37.2 Fix

1. When prevalidation is set to the level ‘Core’, Vonk no longer complains about extensions that are not known if
they are not core extensions (i.e. having a url starting with ‘http://hl7.org/fhir/StructureDefinition/’).

3.38 Release 3.3.0

Attention: To use the new features for auditing and R5, you need a new license file including the tokens for
those plugins. For evaluation and community editions you can retrieve them from Simplifier.net. If you need these
updates in your production license, please contact us.

3.38.1 Feature

1. Vonk was upgraded to FHIR .NET API 1.5.0. See the release notes of the API.

2. Vonk can now log audit lines in a separate file. This can help you achieve HIPAA/GDPR compliancy. See
Auditing for more info.

3. Failed authorization attempts are now logged from the SMART on FHIR plugin.

4. Support for _include:iterate and _revinclude:iterate, see Search.

5. The BinaryWrapper plugin is now two-way. So you can POST binary content and have it stored as a Binary
resource, and GET a Binary resource and have it returned in its original binary format.

6. Experimental support for R5 is now included in the Vonk distribution. For enabling it, see Support for R5
(experimental!).

3.38.2 Fix

1. Indexing of a quantity in resource could fail with a Status code 500 if it had no .value but only extensions.

2. The use of a SearchParameter of type reference having no target failed. These search parameters are now
signalled upon import.

3. Since R4 it is valid to search for a quantity without specifying the unit. Vonk now accepts that.

4. A transaction response bundle could contain an empty response.etag element, which is invalid.

5. Preloading resources was not working since the upgrade to .NET Core 3.0. That has been fixed. It is still only
available for STU3 though.

58 Chapter 3. Release notes Firely Server

https://github.com/FirelyTeam/firely-net-sdk/releases
http://hl7.org/fhir/StructureDefinition/
https://github.com/FirelyTeam/firely-net-sdk/releases

Firely Server

6. Administration import would state that it moves a file to history when it had imported it. That is no longer true,
so we removed this incorrect statement from the log.

7. $validate-code could cause a NullReference exception in some case.

8. The generated CapabilityStatement for R4 failed constraint cpb-14.

9. Content negotiation favoured a mediatype with quality < 1 over a mediatype without quality. But the default
value is 1, so the latter is now favoured.

10. Validate an instance from the database did not account for the informationmodel (aka FHIR version) of the
resource.

3.38.3 Plugins & Facade

1. Document Operation

• Has been upgraded to Vonk 3.2.0.

• Was assigned a license token

• Assigns an id and lastUpdated to the result bundle

2. Conversion

• Has been upgraded to Vonk 3.2.0.

• Was assigned a license token.

3. Vonk.Facade.Starter has been upgraded to Vonk 3.2.1 and as a consequence also to EntityFrameworkCore 3.1.0.

3.39 Release 3.2.1

3.39.1 Fix

1. SMART plugin now understands multiple scopes per access token.

2. SMART plugin now understands Resource.* claims, in addition to already understanding Resource.read
and Resource.write.

3.40 Release 3.2.0

Attention: Vonk 3.2.0 is upgraded to .NET Core 3.1.0, ASP.NET Core 3.1.0 and EntityFramework
Core 3.1.0.

• For running the server: install the ASPNET.Core runtime 3.1.0.

• For developing or upgrading Facades that use Vonk.Facade.Relational: upgrade to EF Core 3.1.0.

• Plugins that target NetStandard 2.0 need not be upgraded.

3.39. Release 3.2.1 59

https://github.com/FirelyTeam/Vonk.Facade.Starter

Firely Server

3.40.1 Database

1. There are no changes to the databases. The upgrade of EntityFramework Core does not affect the structure of
the SQL Server or SQLite databases, just the access to it.

3.40.2 Fix

1. Supported interactions were not enforced for custom operations like e.g. $convert.

2. If a resource failed Validating incoming resources, the OperationOutcome also contained issues on not supported
arguments.

3. A search with ?summary=count failed.

4. Added support for FhirPath hasValue() method.

5. Resolution of canonical http://hl7.org/fhir/v/0360|2.7 failed.

6. CapabilityStatement.rest.resource.searchInclude used ‘.’ as separator, fixed to use ‘:’ in <resource>:<search
parameter code>

7. Changed default value of License:LicenseFile to vonk-license.json, aligned with the default naming if
you download a license from Simplifier.

8. Reindexing always interpreted a resource as STU3. Now it correctly honours the actual FHIR version of the
resource.

3.40.3 Feature

1. BinaryWrapper plugin can now be restricted to a list of mediatypes on which to act.

2. Vonk used to sort on _lastUpdated by default, and add this as extra sort argument if it was not in the request
yet. Now you can configure the element to sort on by default in BundleOptions:DefaultSort. Although
Vonk FHIR Server does not yet support sorting on other elements, this is useful for Facade implementations that
may support that (and possibly not support sort on _lastUpdated). See also Search and History.

3. Implemented $versions operation

4. Extended the documentation on:

• The order of plugins

• Constructing bundles

• several smaller additions

5. The SMART authorization plugin can now be configured to not check the audience. Although not recommended,
it can be useful in testing scenarios or a highly trusted environment.

Attention: We changed the default value for the setting SmartAuthorizationOptions.Audience from
vonk to empty, or ‘not set’. This is to avoid awkward syntax to override it with ‘not-set’. But if you rely
on the value vonk, please override this setting in your appsettings[.instance].json or environment
variables as described in Changing the settings.

60 Chapter 3. Release notes Firely Server

http://hl7.org/fhir/R4/capabilitystatement-operation-versions.html

Firely Server

3.40.4 Plugin and Facade API

1. Vonk.Facade.Relational now supports the use of the .Include() function of EntityFramework Core. To do so,
override RelationalQuery.GetEntitySet(DbContext dbContext).

2. Vonk.Facade.Relational now supports sorting. Override RelationalQueryFactory.
AddResultShape(SortShape sortShape) and return a RelationalSortShape using the
extension method ``SortQuery().

3.41 Release 3.1.3 hotfix

3.41.1 Fix

1. Fixed behavior on conditional updates in transactions. In odd circumstances Vonk could crash on this.

3.42 Release 3.1.0

Please also note the changes in 3.0.0 (especially the one regarding the SQL server database)

3.42.1 Fix

1. Validation on multi-level profiled resources no longer fails with the message “Cannot walk into unknown Struc-
tureDefinition with canonical”

2. Improved documentation on upgrading Vonk, the Vonk pipeline, CORS support, plugins and IIS deployment

3. Using multiple parameters in _sort led to an error for all repositories

4. Vonk UI capability statement view now works for self-mapped endpoints like /R3 or /R4

5. A saved resource reference (e.g. Patient.generalPractitioner) on a self-mapped endpoint (e.g. /R4/...)
would have its relative path duplicated (/R4/R4/...)

Attention: If you have used self-mapped endpoints (appsettings: InformationModel.Mapping.Map in
the ‘Path’ mapping mode) and you have saved resources containing references, it is possible that your database
now contains some resources with broken references. Please contact us if this is the case

3.42.2 Feature

1. The new experimental FHIR mapping engine, which is currently exclusively available on our public FHIR server
http://vonk.fire.ly

2. New licensing system, supporting the community edition

3. Simplifier projects are now imported for FHIR R4 as well

4. The following plugins have been bundled with the Vonk release (compare your appsettings with the new appset-
tings.default.json to activate them)

1. The $document operation (see Documents)

2. The $convert operation (see Conversion)

3.41. Release 3.1.3 hotfix 61

http://vonk.fire.ly

Firely Server

3. The binary wrapper (see Binary)

3.42.3 Plugin and Facade API

1. Vonk.Facade.Starter has been upgraded to work with Vonk 3.1.0

2. IConformanceContributor and IConformanceBuilder have moved from Vonk.Core.Pluggability to
Vonk.Fhir.R3.Metadata. It is also deprecated, as Vonk.Core.Metadata.ICapabilityStatementContributor is
now preferred instead. See Capabilities for more information

3. Implementations of ISearchRepository can now sort on multiple parameters (in BaseQuery.Shapes). Previously
this would result in an error.

4. Improved documentation on the Important classes and interfaces

5. See Release 3.0.0 for some additional issues you may encounter upgrading your plugins

3.43 Release 3.0.0

3.43.1 Database

Please also note the changes in 3.0.0-beta1

1. SQL Server: SQL script ‘20190919000000_Cluster_Indexes_On_EntryId.sql’ (found in the /data folder of the
Vonk distribution) must be applied to existing Vonk SQL databases (both to the admin and to the data repositories)

Attention: Vonk 3.0.0 (using SQL server) will not start unless this script has been applied to the databases.
Please note that running the script can take considerable time, especially for large databases.

3.43.2 Feature

1. Information model (= FHIR version) settings

1. Although Vonk now supports multiple information models (STU3 and R4) simultaneously, an unused model
can be disabled (see Configuring the Firely Server Pipeline)

2. You can set the default (or fallback) information model (previously: STU3), which is used when Vonk can
not determine the information model from context (see Information model)

3. You can map a path or a subdomain to a specific information model (see Information model), mitigating
the need to specify it explicitly in a request

2. Vonk now uses FHIR .NET API 1.4.0

3. Several performance enhancements have been made for SQL server and IIS setups

4. Added R4-style Conditional Update to both STU3 and R4

62 Chapter 3. Release notes Firely Server

https://github.com/FirelyTeam/firely-net-sdk/releases
https://www.hl7.org/fhir/http.html#cond-update

Firely Server

3.43.3 Fix

1. Circular references within resources are now detected, cancelling validation for now. We will re-enable validation
for these resources when the FHIR .NET API has been updated

2. An $expand using incorrect data returned a 500 (instead of the correct 400)

3. Vonk now returns a 406 (Not Acceptable) when the Accept header contains an unsupported format

4. Deletes did not work for R4

5. Search parameters

1. Search parameters were read twice (at startup and upon the first request)

2. Search parameter ‘CommunicationRequest.occurrence’ is not correctly specified in the specification. We
provide a correct version.

6. _history

1. _history was not usable in a multi information model setup

2. The resulting Bundle.entry in an STU3 _history response contained the unallowed response field

3. Added Bundle.entry.response to the R4 _history entry

7. Batches

1. Valid entries in batches also containing invalid entries were not processed

2. Duplicate fullUrls are no longer accepted in a batch request, which previously led to a processing error

3. An R4 transaction resulted in STU3 entries

4. Transactional errors did not include fullUrl

3.43.4 Plugin and Facade API

1. Improved the message you get when the sorting/shaping operator is not implemented by your facade

2. VonkOutcome (and VonkIssue) has been simplified

3. VonkConstants has moved from Vonk.Core.Context to Vonk.Core.Common

4. IResourceChangeRepository.Delete requires a new second parameter: string informationModel. Informa-
tion model constants can be found in Vonk.Core.Common.VonkConstants.Model

5. Exclude Vonk.Fhir.R3 or Vonk.Fhir.R4 from the PipelineOptions if you don’t support it in your Facade.

6. Updated the minimal PipelineOptions for a Facade Plugin in the example appsettings.json:

• updated Vonk.Core.Operations.SearchConfiguration to Vonk.Core.Operations.Search

• removed Vonk.UI.Demo

• removed Vonk.Core.Operations.Validate.SpecificationZipSourceConfiguration from the
Exclude

• updated Vonk.Core.Operations.Terminology to Vonk.Plugins.Terminology

Note: Early Facade implementations were built with by using Vonk services and middleware in a self-built ASP.NET
Core web server. This can be seen in the Vonk.Facade.Starter project in the repository with the same name. Due to
changes in Vonk this does not work with Vonk 3.0.0. It will be fixed in 3.1.0. But after that such projects cannot

3.43. Release 3.0.0 63

https://github.com/FirelyTeam/Vonk.Facade.Starter/blob/master/Visi.Repository/appsettings.json
https://github.com/FirelyTeam/Vonk.Facade.Starter

Firely Server

be upgraded anymore and will have to be refactored to a proper plugin (as the ViSi.Repository project in the same
repository). Please contact us in case of any questions.

3.44 Release 3.0.0-beta2

Attention: We updated the Security notifications for Firely Server.

3.44.1 Database

Note the changes in 3.0.0-beta1, but there are no new changes in beta2.

3.44.2 Feature

1. Subscriptions works for R4 also. Note that a Subscription will only be activated for resource changes in the same
FHIR version as the Subscription itself.

2. Load Conformance Resources from disk works for R4 also. Use a directory name that ends with .R4 for R4
conformance resources.

3. Re-indexing for new or changed SearchParameters works for R4 also. Issue a reindex with a fhirVersion param-
eter in the Accept header, and it will be executed for the SearchParameters defined for that FHIR version.

4. Allow for non-hl7 prefixed canonical urls for conformance resources (since sdf-7 is lifted). See Custom Re-
sources.

5. Custom Resources can be validated, both individually and as part of a bundle. See Custom Resources.

6. If the Accept header lacks a fhirVersion parameter, it will fall back to the fhirVersion parameter of the Content-
Type header and vice versa. If both are missing, Vonk will default to STU3.

3.44.3 Fix

1. _include did not work for R4.

2. _include gave a 500 response code if a resource contains absolute references.

3. A resource with unknown elements could result in an uncaught Hl7.Fhir.ElementModel.
StructuralTypeException.

4. The homepage stated that Vonk was only for STU3. Fixed that.

5. Bundle.timestamp element (new in R4) was not populated in bundles returned from Search and History opera-
tions.

6. Some operations could return an OperationOutcome with an issue and a success message.

7. Better error message if a resource without any meta.profile is not accepted by Validating incoming resources.

8. Requesting an invalid FHIR version resulted in a ArgumentNullException.

64 Chapter 3. Release notes Firely Server

Firely Server

3.44.4 Plugin and Facade API

1. NuGet package Vonk.Fhir.R4 had a dependency on Vonk.Administration.API, but the latter is not published.
We removed the dependency.

2. IResourceExtensions.UpdateMetadata did not update the id of the resource.

3. VonkOutcome.RemoveIssue() method has been removed.

3.44.5 Examples

1. Plugin example (Vonk.Plugin.ExampleOperation):

1. Added an example of middleware directly interacting with the HttpContext (instead of just the
VonkContext), see the file VonkPluginMiddleware.cs

2. CapabilityStatementBuilder was not called.

2. DocumentOperation (Vonk.Plugin.DocumentOperation):

1. Composition ID was not determined correctly when using POST.

3.45 Release 3.0.0-beta1

Vonk 3.0.0 is a major upgrade that incorporates handling FHIR R4. This runs in the same server core as FHIR STU3.
See Multiple versions of FHIR for background info.

Attention: If you have overridden the PipelineOptions in your own settings, you should review the new additions
to it in the appsettings.default.json. In particular we added Vonk.Fhir.R4 that is needed to support FHIR R4.

Attention: MacOS: you may need to clean your temp folder from previous specification.zip expansions. Find the
location of the temp folder by running echo $TMPDIR.

3.45.1 Database

1. SQL Server, SQLite:

1. vonk.entry got a new column ‘InformationModel’, set to ‘Fhir3.0’ for existing resources.

2. vonk.ref got a new column ‘Version’.

3. Database indexes have been updated accordingly.

Vonk will automatically update both the Administration and the Data databases when you run Vonk 3.0.0.

2. MongoDb / CosmosDb:

1. The documents in the vonkentries collection got a new element im (for InformationModel), set to ‘Fhir3.0’
for existing resources.

2. The documents in the vonkentries collection got a new element ref.ver (for Version).

3. Database indexes have been updated accordingly.

3.45. Release 3.0.0-beta1 65

https://github.com/FirelyTeam/Vonk.Plugin.ExampleOperation
https://github.com/FirelyTeam/Vonk.Plugin.ExampleOperation/blob/master/Vonk.Plugin.ExampleOperation/VonkPluginMiddleware.cs
https://github.com/FirelyTeam/Vonk.Plugin.DocumentOperation

Firely Server

3. MongoDb / CosmosDb: Got a light mechanism of applying changes to the document structure. A single docu-
ment is added to the collection for that, containing VonkVersion and LatestMigration.

4. MongoDb: The default name for the main database was changed from ‘vonkstu3’ to ‘vonkdata’. If you want
to continue using an existing ‘vonkstu3’ database, override MongoDbOption:DatabaseName, see Hierarchy of
settings.

3.45.2 Feature

1. Support for FHIR R4 next to FHIR STU3. Vonk will choose the correct handling based on the fhirVersion
parameter in the mimetype. The mimetype is read from the Accept header and (for POST/PUT) the Content-
Type header. See Multiple versions of FHIR for background info.

2. Upgrade to HL7.Fhir.Net API 1.3, see its releasenotes.

3. Administration API imports both STU3 and R4 conformance resources, see Conformance Resources

1. Note: Terminology operations are still only available for STU3.

2. Note: Subscriptions are still only available for STU3.

4. Conditional delete on the Administration API. It works just as on the root, see Create, read, update, patch, delete.

5. Defining a custom SearchParameter on a Custom ResourceType is now possible.

6. Canonical uris are now recognized when searching on references (specification)

7. Vonk calls UseIISIntegration for better integration with IIS (if present).

3.45.3 Fix

1. In the settings, PipelineOptions.Branch.Path for the root had to be /. Now you can choose your own base (like
e.g. /fhir)

2. $meta:

1. enabled on history endpoint (e.g. /Patient/123/_history/v1)

2. disabled on type and system level

3. returned empty Parameters resource if resource had no meta.profile, now returns the resources meta
element.

4. when called on a non-existing resource, returns 404 (was: empty Parameters resource)

5. added to the CapabilityStatement

3. History on non-existing resource returned OperationOutcome instead of 404.

4. The setting for SupportedInteractions was not enforced for custom operations.

5. CapabilityStatement.name is updated from Vonk beta conformance to Vonk FHIR Server <version>
CapabilityStatement.

6. Terminology services:

1. $lookup did not work on GET /CodeSystem

2. $lookup did not support the coding parameter

3. $expand did not fill in the expansion element.

4. Operations were not listed in the CapabilityStatement.

66 Chapter 3. Release notes Firely Server

https://docs.fire.ly/projects/Firely-NET-SDK/releasenotes.html#stu3-r4-released-20190710
http://www.hl7.org/implement/standards/fhir/search.html#versions

Firely Server

5. Namespace changed to Vonk.Plugins.Terminology, and adjusted accordingly in the default PipelineOptions.

7. A SearchParameter of type token did not work on an element of type string, e.g. CodeSystem.version.

8. Search with POST was broken.

9. If a long running task is active (response code 423, see Import of Conformance Resources and Re-indexing for
new or changed SearchParameters), the OperationOutcome reporting that will now hide issues stating that all
the arguments were not supported (since that is not the cause of the error).

10. Overriding an array in the settings was hard - it would still inherit part of the base setting if the base array was
longer. We changed this: an array will always overwrite the complete base array. Note that this may trick you if
you currently override a single array element with an environment variable. See Hierarchy of settings.

11. The element meta.source cannot be changed on subsequent updates to a resource (R4 specific)

12. SearchParameter StructureDefinition.ext-context yielded many errors in the log because the definition
of the fhirpath in the specification is not correct. We provided a corrected version in errataFhir40.zip (see Errata
to the specification).

13. Enable or disable interactions was not evaluated for custom operations.

14. Delete of an instance accepted search parameters on the url.

15. Transactions: references to other resources in the transaction were not updated if the resource being referenced
was in the transaction as an update (PUT). (this error was introduced in 2.0.0).

3.45.4 Plugin and Facade API

1. A new NuGet package is introduced: Vonk.Fhir.R4.

2. VonkConstants moved to the namespace Vonk.Core.Common (was: Vonk.Core.Context)

3. IResource.Navigator element is removed (was already obsolete). Instead: Turn it into an ITypedElement
and use that for navigation with FhirPath.

4. InformationModel element is added to

1. IResource: the model in which the resource is defined (VonkConstants.Model.FhirR3 or
VonkConstants.Model.FhirR4)

2. IVonkContext: the model that was specified in the Accept header

3. IModelService: the model for which this service is valid (implementations are available for R3 and R4)

4. InteractionHandler attribute: to allow you to specify that an operation is only valid for a specific FHIR
version. This can also be done in the fluent interface with the new method AndInformationModel. See
Interaction Handling

5. Dependency injection: if there are implementations of an interface for R3 and R4, the dependency injection in
Vonk will automatically inject the correct one based on the InformationModel in the request.

6. If you want to register your own service just for one informationmodel, do that as follows:

Add a ContextAware attribute to the implementation class:

[ContextAware (InformationModels = new[] {VonkConstants.Model.FhirR3}]
public class MySearchRepository{...}

Then register the service as being ContextAware:

services.TryAddContextAware<ISearchRepository, MySearchRepository>(ServiceLifeTime.
→˓Scoped);

3.45. Release 3.0.0-beta1 67

Firely Server

7. FhirPropertyIndexBuilder is moved to Vonk.Fhir.R3 (and was already marked obsolete - avoid using it)

8. Implementations of the following that are heavily dependent upon version specific Hl7.Fhir libraries have been
implemented in both Vonk.Fhir.R3 and Vonk.Fhir.R4.

1. IModelService

2. IStructureDefinitionSummaryProvider (to add type information to an IResource and turn it into
an ITypedElement)

3. ValidationService

9. IConformanceContributor is changed to ICapabilityStatementContributor. The methods on it have
changed slightly as well because internally they now work on a version-independent model. Please review your
IConformanceContributor implementations.

3.45.5 Examples

1. Document plugin:

1. Document Bundle does not contain an identifier

2. Missing unit test for custom resources

3. Upgraded to Vonk 2.0.0 libraries (no, not yet 3.0.0-beta1)

2. Facade example

1. Added support for searching directly on a reference from Observation to Patient (e.g. /Observation?
patient=Patient/3).

2. Fixed support for _revinclude of Observation on Patient (e.g. /Patient?
_revinclude:Observation:subject:Patient).

3. Upgraded to Vonk 2.0.0 libraries (no, not yet 3.0.0-beta1)

3. Plugin example

1. Added examples for pre- and post handlers.

3.45.6 Known to-dos

1. Re-indexing for new or changed SearchParameters: does not work for R4 yet.

2. Preloading resources: does not work for R4 yet.

3. Subscriptions: do not work for R4 yet.

4. Terminology services: operations do not work for R4.

5. During Import of Conformance Resources: Files in the import directory and Simplifier projects are only imported
for R3.

68 Chapter 3. Release notes Firely Server

https://github.com/FirelyTeam/Vonk.Plugin.DocumentOperation/issues/27
https://github.com/FirelyTeam/Vonk.Plugin.DocumentOperation/issues/29

CHAPTER

FOUR

HOW TO UPGRADE FIRELY SERVER?

The process for upgrading Firely Server depends on whether you have a vanilla Firely Server, you added your own
plugins or are running a Facade. This page describes the general process for each situation. Please refer to the Release
notes Firely Server for details per each released version of Firely Server.

4.1 Upgrading Firely Server

4.1.1 Using the binary distribution

1. Download the latest version of Firely Server, see Getting Started, and extract it to where you want it installed.

2. Copy your appsettings.instance.json and logsettings.instance.json files from the current installation to the new
installation.

3. Check the Release notes Firely Server for any new settings that you may want to apply or change from their
defaults.

4. Check the Release notes Firely Server for any actions that you need to take specifically for this upgrade.

5. Make sure the new installation can find the license file (see License, general advice is to put the license file
outside of the installation directory).

6. Create a backup of your current databases, both the main Resource database and the Administration database.
See Repository to find the details on your configured database connection.

7. Stop the running instance of Firely Server (Ctrl + C if running from the console).

8. Switch to the new installation directory and start Firely Server from there (> dotnet ./Vonk.Server.dll)

9. Firely Server will now do several upgrade tasks, during which any web request will be responded to with 423 -
Locked:

1. If needed, an update is applied to the database structure.

2. If Firely Server introduces a new version of the FHIR .NET API, Firely Server will load a new set of
Conformance Resources from the specification.zip into the Administration database, for both FHIR STU3
and FHIR R4. In a specific case you can prevent this step from happening.

10. When Firely Server is done with the tasks above, it is again available to process requests.

11. Check the log for warnings stating that you use obsolete settings. If so, adjust them and restart Firely Server.

If anything went wrong, go back:

1. Stop the (new) running instance of Firely Server.

2. Restore both databases from your backup.

69

Firely Server

3. Switch to the old installation directory and start the old version of Firely Server from there (> dotnet .\Vonk.
Server.dll)

4. It should start as it did before you began the upgrade.

5. Report the problem to the Firely Server helpdesk, see Contact us.

You may be able to avoid the import of specification.zip if:

• The Administration database is in SQLite and

• You have not made alterations to the Administration API through the Web API.

In this case you can simply replace the old database (usually with the filename vonkadmin.db) with the one from
the new installation directory (in ./data/vonkadmin.db). Do so before you start the new Firely Server installation.
Anything specified in AdministrationImportOptions will be re-imported into the new database.

4.1.2 Using Docker

Revisit Using Firely Server on Docker.

1. Stop the running container for Firely Server: > docker stop vonk.server.

2. Pull the latest image for Firely Server: > docker pull firely/server (versions 4.6 and older: > docker
pull simplifier/vonk)

3. Check the Release notes Firely Server for any new settings that you may want to apply or change from their
defaults, and apply that to the environment setting in the docker-compose file.

4. Check the Release notes Firely Server for any action that you need to take specifically for this upgrade.

5. Create a backup of your current databases, both the main Resource database and the Administration database.
See Repository and your docker-compose file to find the details on where your databases are.

6. Start the new version (see Using Firely Server on Docker for the various commands to run the Firely Server
container).

7. Firely Server will now do several upgrade tasks, during which any web request will be responded to with 423 -
Locked:

1. If needed, an update is applied to the database structure.

2. If Firely Server introduces a new version of the FHIR .NET API, Firely Server will load a new set of
Conformance Resources from the specification.zip into the Administration database, for both FHIR STU3
and FHIR R4. In a specific case you can prevent this step from happening.

8. When Firely Server is done with the tasks above, it is again available to process requests.

9. Check the log for warnings stating that you use obsolete settings. If so, adjust them and restart Firely Server.

If anything went wrong, go back:

1. Stop the (new) running container of Firely Server.

2. Restore both databases from your backup.

3. Specify your previous image of Firely Server in the docker command or in the docker-compose file: firely/
server:<previous-version-tag>

4. Start the container based on this previous image.

5. It should start as it did before you began the upgrade.

6. Report the problem to the Firely Server helpdesk, see Contact us.

70 Chapter 4. How to upgrade Firely Server?

Firely Server

4.2 Upgrading Plugins

Since a Plugin runs in the context of a Firely Server we advise you to start by upgrading your Firely Server, without
loading your Plugin. Check the section on Configuring the Firely Server Pipeline to see how you can exclude your
plugin from the pipeline.

Attention: We do not guarantee that a plugin built against version x.y.z of Firely Server can be run within a newer
or older version as-is. Between minor versions recompilation is usually enough to update your plugin. Between
major versions you should prepare for breaking changes in the public programming API. Sometimes we choose to
apply such changes even on a minor version update, if we are fairly sure that you will not or only slightly be affected
by it.

Upgrade the references in your plugin:

1. Open the source code of your plugin, and open the project file (yourplugin.csproj).

2. Change the references to the Firely Server.* packages to the version that you want to upgrade to.

3. Build and check the errors.

4. Check the list of breaking changes for the new Firely Server version in the Release notes Firely Server. Applying
the changes should fix the errors.

5. With some releases Firely Server is also upgraded to a newer version of the Firely .NET SDK. That is then
mentioned in the release notes. If this is the case, also check the SDK release notes for breaking changes.

6. Still errors? Maybe we have overlooked a change. Please report it to us, see Contact us. And if it is easy to fix -
do so :-)

7. Build and publish your plugin.

8. Put the resulting dll’s in the plugin directory of the new installation of Firely Server.

9. Re-include your plugin in the pipeline.

10. (Re)start Firely Server and test the working of your plugin.

4.3 Upgrading Facades

A Facade implementation is technically also a plugin, but one that only adds repository access services. For this it
makes no sense to try to run Firely Server without the Facade as is described for plugins. So start with upgrading the
references right away.

Especially for Facades to relational databases: match the version of EntityFrameworkCore that the new version of Firely
Server is using. Check the list of changes to see whether we upgraded.

4.2. Upgrading Plugins 71

https://github.com/FirelyTeam/firely-net-sdk/releases

Firely Server

4.4 Migrations

Sometimes, an upgrade of the database schema is needed in order to introduce performance improvements or enable
new features. Depending on the database that is used, Firely Server provides different techniques to migrate the data.
Most migrations can be performed automatically whereas in some cases, manual migrations are preferable.

One of these cases is a scenario in which Firely Server operates at scale, handling billions of resources. In such a
scenario, manual migrations are preferable as they might take longer than expected and come with challenges. In this
section, we will elaborate on some of these challenges and how to mitigate them.

4.4.1 MongoDB

For Firely Server instances running on MongoDB, we consider databases with more than 500GB as large. Migrations
for these databases take a long time which is why we introduced external migration scripts with Firely Server 4.5.0.
These external scripts are written in JavaScript and allow to exert more control at the cost of some convenience.

The migration scripts usually perform two operations in this order:
1. Migrate the existing data using the updateMany() operator.

2. Update the system information document to the next version.

While migrating large databases manually via SSH it is always a risk that the connection with the remote computer
breaks and the SSH session terminates. Normally, this would also mean that all programs started within that SSH
session will also be terminated including the migration. To prevent this from happening, we recommend using the
screen tool to perform the migration. Using it allows programs to continue running even if the SSH connection
breaks.

1. Install the screen tool or check whether it is installed with screen --version

2. Start a screen session: screen

3. Execute the migration script in this screen session

4. In case the SSH connection breaks, you can connect via SSH again and get access to the running migration
process using the command screen -r

5. Wait until the migration is done and restart Firely Server

In case the migration actually times out or is interrupted, the updateMany() operator will continue running in the
background. The update of the schema version, however, will not succeed and needs to be performed manually. Follow
these steps to do so:

1. Connect to your MongoDB host.

2. Open a MongoDB shell by executing mongo from the command line.

3. Switch to the vonk database: use vonkdata

4. Check whether the current migration is still running with: db.currentOp(). You will likely see multiple
operations in this command’s output. Look for an operation that resembles the commands included in the try
{} catch {} block in the migration’s JavaScript file. If any such operation is still listed, the migration is still
running.

5. Wait until the operation associated with the migration has finished.

6. Afterwards, retrieve the system document id by executing:

72 Chapter 4. How to upgrade Firely Server?

Firely Server

db.vonkentries.findOne(
{

"LatestMigration": { $exists: true }
}

)

7. Note down the value of the _id field, for example ObjectId("61bc7dab260c691f4c0f78d4")

8. Open the JavaScript migration script. Note down the value of the next FS and migration version. You will find
these values as constants at the top of the migration script or in a coll.updateOne() command at the end of
the script.

9. Open a mongo shell on your host and exchange ObjectId, VonkVersion and LatestMigration to the previously
noted values:

db.vonkentries.updateOne(
{

_id: ObjectId("61bc7dab260c691f4c0f78d4")
},
{

"$set": {
VonkVersion: "4.9.0",
LatestMigration: 22

}
}

)

10. Execute this command in your mongo shell

That’s it! The migration of the data is finished and the document containing the system information is updated accord-
ingly. You should now be able to start the new version of Firely Server.

4.4. Migrations 73

Firely Server

74 Chapter 4. How to upgrade Firely Server?

CHAPTER

FIVE

FIRELY SERVER ROADMAP

This page lists the features and changes we have planned for the foreseeable future. This planning is volatile, so changes
will happen. We will update this page accordingly. You are also very welcome to provide input to us on features or
fixes that you would like to see prioritized.

Disclaimer: No rights can be derived from this roadmap.

5.1 2022

5.1.1 Q2

• Addition of various performance improvements and features to our MongoDB implementation which are cur-
rently only available for SQL Server

– Support for transactions

5.1.2 Q3

• Check compliance with CMS ImplementationGuides

• Bulk data export as a separate service - deploy and scale it independently of Firely Server

• New Firely Validator as a separate service - deploy and scale it independently of Firely Server

• Provide production-ready IdentityServer instance bundled with Firely Server

5.1.3 Q4

• Enhanced support for subscriptions

• R4B Support

75

Firely Server

76 Chapter 5. Firely Server Roadmap

CHAPTER

SIX

FREQUENTLY ASKED QUESTIONS

. . . and known issues.

6.1 Conflicting resources upon import

When importing specification.zip for R4, Firely Server will report errors like these:

::

Artifact C:Users<user>AppDataLocalTempFhirArtifactCache-1.5.0-Hl7.Fhir.R4.Specificationspecification_Fhir4_0dataelements.xml
could not be imported. Error message: Found multiple conflicting resources with the same resource uri
identifier.

Url: http://hl7.org/fhir/StructureDefinition/de-Quantity.value
File: C:UsersChristiaanAppDataLocalTempFhirArtifactCache-1.5.0-
Hl7.Fhir.R4.Specificationspecification_Fhir4_0dataelements.xml File:
C:UsersChristiaanAppDataLocalTempFhirArtifactCache-1.5.0-Hl7.Fhir.R4.Specificationspecification_Fhir4_0dataelements.xml
File: C:UsersChristiaanAppDataLocalTempFhirArtifactCache-1.5.0-
Hl7.Fhir.R4.Specificationspecification_Fhir4_0dataelements.xml

The error message is actually correct, since there are duplicate fullUrls in dataelements.xml in the specification. This
has been reported in Jira issue FHIR-25430.

6.2 Searchparameter errors for composite parameters

When importing specification.zip for various FHIR versions, Firely Server will report errors like these:

Composite SearchParameter 'CodeSystem.context-type-quantity' doesn't have components.

A searchparameter of type ‘composite’ should define which components it consists of. Firely Server checks whether all
the components of such a composite searchparameter are present. If no components are defined at all - that is, Search-
Parameter.component is empty - it will display this error. This indicates an error in the definition of the searchparameter
and should be solved by the author of it.

However, the implementation of this check seems to have an error so too many composite parameters are reported as
faulty. We will address this issue in the next release.

77

http://hl7.org/fhir/StructureDefinition/de-Quantity.value
https://jira.hl7.org/browse/FHIR-25430

Firely Server

6.3 .NET SDK not found

Since version 4.0 Vonk was renamed to Firely Server, including the main entrypoint. It changed from vonk.server.
dll to firely.server.dll.

If you now still run dotnet vonk.server.dll on .NET runtime 3.1 it will state this error:

::
It was not possible to find any installed .NET Core SDKs Did you mean to run .NET Core SDK
commands? Install a .NET Core SDK from: https://aka.ms/dotnet-download

This is very misleading. The actual error is that you probably tried to run dotnet vonk.server.dll but this dll no
longer exists.

The same error can happen if you have built a Docker image of your own with dotnet vonk.server.dll as entry-
point.

.NET 5 fixed this and more clearly states that the dll is missing.

6.4 Homepage takes long to load

The html homepage that is provided with Firely Server may take a long time to load, even though the server seems fully
up and running.

The homepage consumes the bootstrap.js library from a CDN. The delay may be caused by a firewall slowing down
that download.

The remedy is to disable the homepage in the pipelinesettings:

"PipelineOptions": {
"PluginDirectory": "./plugins",
"Branches": [
{
"Path": "/",
"Include": [

"Vonk.Core",
...,
// "Vonk.UI.Demo", <-- disable this one
...

],
},
{
"Path": "/administration",
...

}
]

}

78 Chapter 6. Frequently asked questions

https://aka.ms/dotnet-download

CHAPTER

SEVEN

CONFIGURING FIRELY SERVER

In this section we assume you have downloaded and installed the Firely Server binaries, and have obtained a license
file. If not, please see the Getting Started and follow the steps there first.

The steps you followed to get started will provide you with a basic Firely Server, that runs on a standard port and keeps
the data in a SQLite database.

If you need to adjust the port, or want to use a MongoDB or SQL database you can configure Firely Server by adjusting
the Firely Server settings.

If you want to change the way Firely Server logs its information, you can adjust the Log settings.

7.1 Firely Server settings

Firely Server settings are controlled in json configuration files called appsettings(.*).json. The possible settings
in these files are all the same and described below. The different files are read in a hierarchy so you can control settings
on different levels. All appsettings files are in the Firely Server distribution directory, next to Firely.Server.dll. We go
through all the sections of this file and refer you to detailed pages on each of them.

You can also control Firely Server settings with Environment Variables.

Changes to the settings require a restart of Firely Server.

7.1.1 Hierarchy of settings

Firely Server reads its settings from these sources, in this order:

appsettings.default.json
Installed with Firely Server, contains default settings and a template setting if no sensible default is
available.

appsettings.json
You can create this one for your own settings. Because it is not part of the Firely Server distribution,
it will not be overwritten by a next Firely Server version.

environment variables
See Firely Server settings with Environment Variables.

appsettings.instance.json
You can create this one to override settings for a specific instance of Firely Server. It is not part of
the Firely Server distribution. This file is especially useful if you run multiple instances on the same
machine.

79

Firely Server

Settings lower in the list override the settings higher in the list (think CSS, if you’re familiar with that).

Warning: JSON settings files can have arrays in them. The configuration system can NOT merge arrays. So if you
override an array value, you need to provide all the values that you want in the array. In the Firely Server settings
this is relevant for e.g. Validation.AllowedProfiles and for the PipelineOptions.

Note: By default in ASP.NET Core, if on a lower level the array has more items, you will still inherit those extra items.
We fixed this in Firely Server, an array will always overwrite the complete base array. To nullify an array, add the value
with an array with just an empty string in it:

"PipelineOptions": {
"Branches": [
{
"Path": "myroot",
"Exclude": [""]

}
]

}

This also means you cannot override a single array element with an environment variable. (Which was tricky anyway
- relying on the exact number and order of items in the original array.)

7.1.2 Changing the settings

In general you do not change the settings in appsettings.default.json but create your own overrides in
appsettings.json or appsettings.instance.json. That way your settings are not overwritten by a new ver-
sion of Firely Server (with a new appsettings.default.json therein), and you automatically get sensible defaults
for any new settings introduced in appsettings.default.json.

Settings after first install

After you installed Firely Server (see Getting Started), either:

• copy the appsettings.default.json to appsettings[.instance].json and remove settings that you do
not intend to alter, or

• create an empty appsettings[.instance].json and copy individual parts from the appsettings.
default.json if you wish to adjust them.

Adjust the new appsettings[.instance].json to your liking using the explanation below.

When running Firely Server on Docker you probably want to adjust the settings using the Environment Variables.

80 Chapter 7. Configuring Firely Server

Firely Server

Settings after update

If you install the binaries of an updated version of Firely Server, you can:

• copy the new binaries over the old ones, or

• deploy the new version to a new directory and copy the appsettings[.instance].json over from the old
version.

In both cases, check the Release notes Firely Server to see if settings have changed, or new settings have been introduced.
If you want to adjust a changed / new setting, copy the relevant section from appsettings.default.json to your
own appsettings[.instance].json and then adjust it.

Commenting out sections

JSON formally has no notion of comments. But the configuration system of ASP.Net Core (and hence Firely Server)
accepts double slashes just fine:

"Administration": {
"Repository": "SQLite", //Memory / SQL / MongoDb
"SqlDbOptions": {

"ConnectionString": "connectionstring to your Firely Server Admin SQL Server␣
→˓database (SQL2012 or newer); Set MultipleActiveResultSets=True",

"SchemaName": "vonkadmin",
"AutoUpdateDatabase": true,
"MigrationTimeout": 1800 // in seconds
//"AutoUpdateConnectionString" : "set this to the same database as

→˓'ConnectionString' but with credentials that can alter the database. If not set,␣
→˓defaults to the value of 'ConnectionString'"

},

This will ignore the AutoUpdateConnectionString.

7.1.3 Log of your configuration

Because the hierarchy of settings can be overwhelming, Firely Server logs the resulting configuration. To enable that,
the loglevel for Vonk.Servermust be Information or more detailed. That is set for you by default in logsettings.
default.json. Refer to Log settings for information on setting log levels.

7.1.4 Administration

"Administration": {
"Repository": "SQLite", //Memory / SQL / MongoDb are other options, but SQLite is␣

→˓advised.
"MongoDbOptions": {

"ConnectionString": "mongodb://localhost/vonkadmin",
"EntryCollection": "vonkentries"

},
"SqlDbOptions": {

"ConnectionString": "connectionstring to your Firely Server Admin SQL Server␣
→˓database (SQL2012 or newer); Set MultipleActiveResultSets=True",

"SchemaName": "vonkadmin",
(continues on next page)

7.1. Firely Server settings 81

Firely Server

(continued from previous page)

"AutoUpdateDatabase": true,
"MigrationTimeout": 1800 // in seconds
//"AutoUpdateConnectionString" : "set this to the same database as

→˓'ConnectionString' but with credentials that can alter the database. If not set,␣
→˓defaults to the value of 'ConnectionString'"

},
"SQLiteDbOptions": {

"ConnectionString": "Data Source=./data/vonkadmin.db",
"AutoUpdateDatabase": true

},
"Security": {
"AllowedNetworks": ["::1"], // i.e.: ["127.0.0.1", "::1" (ipv6 localhost), "10.1.

→˓50.0/24", "10.5.3.0/24", "31.161.91.98"]
"OperationsToBeSecured": ["reindex", "reset", "preload"]
}

},

The Administration section is to Configure the Administration API and its repository.

7.1.5 License

"License": {
"LicenseFile": "firelyserver-trial-license.json",
"RequestInfoFile": "./.vonk-request-info.json",
"WriteRequestInfoFileInterval": 15 // in minutes

}

The Getting Started explains how to obtain a licensefile for Firely Server. Once you have it, put the path to it in the
LicenseFile setting. Note that in json you either use forward slashes (/) or double backward slashes (\\) as path
separators.

Note: It is also possible to supply a license via an environment variable. This functionality is handy when Firely
Server is running within a Docker container. See Providing license via an environment variable for details.

Other settings:

• RequestInfoFile sets the location of the file with request information. This file will be used in future releases.

• WriteRequestInfoFileInterval sets the time interval (in minutes) to write aggregate information about
processed requests to the RequestInfoFile.

82 Chapter 7. Configuring Firely Server

Firely Server

7.1.6 Repository

"Repository": "SQLite", //Memory / SQL / MongoDb

1. Repository: Choose which type of repository you want. Valid values are:

1. Memory

2. SQL, for Microsoft SQL Server

3. SQLite

4. MongoDb

Memory

"MemoryOptions": {
"SimulateTransactions": "false"

},

Refer to Using the In-Memory storage for configuring the In-Memory storage.

MongoDB

"MongoDbOptions": {
"ConnectionString": "mongodb://localhost/vonkdata",
"EntryCollection": "vonkentries"

},

Refer to Using MongoDB for configuring the connection to your MongoDB databases.

SQL

"SqlDbOptions": {
"ConnectionString": "connectionstring to your Firely Server SQL Server database␣

→˓(SQL2012 or newer); Set MultipleActiveResultSets=True",
"SchemaName": "vonk",
"AutoUpdateDatabase": true,
"MigrationTimeout": 1800 // in seconds
//"AutoUpdateConnectionString" : "set this to the same database as 'ConnectionString

→˓' but with credentials that can alter the database. If not set, defaults to the value␣
→˓of 'ConnectionString'"
},

Refer to Using SQL server for configuring access to your SQL Server databases.

7.1. Firely Server settings 83

Firely Server

SQLite

"SQLiteDbOptions": {
"ConnectionString": "Data Source=./data/vonkdata.db",
"AutoUpdateDatabase": true

},

Refer to Using SQLite for configuring access to your SQLite Server databases.

7.1.7 http and https

"Hosting": {
"HttpPort": 4080,
//"HttpsPort": 4081, // Enable this to use https
//"CertificateFile": "<your-certificate-file>.pfx", //Relevant when HttpsPort is␣

→˓present
//"CertificatePassword" : "<cert-pass>" // Relevant when HttpsPort is present
//"PathBase": "<subpath-to-firely-server>",
"ClientCertificateMode": "NoCertificate" // NoCertificate, AllowCertificate,␣

→˓RequireCertificate
},

Refer to Configure http and https for enabling https and adjusting port numbers. The PathBase enables the option to
specify a path as part of root path (See PathBase middleware for more information). The ClientCertificateMode will
instruct Firely Server to request or require a TLS client certificate (See ASP .NET Core - Client Certificates for more
information).

7.1.8 Validation

"Validation": {
"Parsing": "Permissive", // Permissive / Strict
"Level": "Off", // Off / Core / Full
"AllowedProfiles": []

},

Refer to Validating incoming resources.

7.1.9 Search and History

"BundleOptions": {
"DefaultCount": 10,
"MaxCount": 50,
"DefaultSort": "-_lastUpdated"

},

The Search and History interactions return a bundle with results. Users can specify the number of results that they
want to receive in one response with the _count parameter.

• DefaultCount sets the number of results if the user has not specified a _count parameter.

84 Chapter 7. Configuring Firely Server

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.usepathbaseextensions.usepathbase?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/endpoints?view=aspnetcore-6.0#client-certificates

Firely Server

• MaxCount sets the number of results in case the user specifies a _count value higher than this maximum. This
is to protect Firely Server from being overloaded.

• DefaultCount should be less than or equal to MaxCount

• DefaultSort is what search results are sorted on if no sort order is specified in the request. If a sort order is
specified, this is still added as the last sort clause.

7.1.10 Batch and transaction

"BatchOptions": {
"MaxNumberOfEntries": 100

},

This will limit the number of entries that are accepted in a single Batch or Transaction bundle.

Note: This setting has been moved to the SizeLimits setting as of Firely Server (Vonk) version 0.7.1, and the logs
will show a warning that it is deprecated when you still have it in your appsettings file.

7.1.11 Protect against large input

"SizeLimits": {
"MaxResourceSize": "1MiB",
"MaxBatchSize": "5MiB",
"MaxBatchEntries": 150

},

• MaxResourceSize sets the maximum size of a resource that is sent in a create or update.

• MaxBatchSize sets the maximum size of a batch or transaction bundle. (Note that a POST http(s)://<firely-
server-endpoint>/Bundle will be limited by MaxResourceSize, since the bundle must be processed as a whole
then.)

• MaxBatchEntries limits the number of entries that is allowed in a batch or transaction bundle.

• The values for MaxResourceSize and MaxBatchSize can be expressed in b (bytes, the default), kB (kilobytes),
KiB (kibibytes), MB (megabytes), or MiB (mebibytes). Do not put a space between the amount and the unit.

7.1.12 SearchParameters and other Conformance Resources

"AdministrationImportOptions": {
"ImportDirectory": "./vonk-import",
"ImportedDirectory": "./vonk-imported", //Do not place ImportedDirectory *under*␣

→˓ImportDirectory, since an import will recursively read all subdirectories.
"SimplifierProjects": [
{
"Uri": "https://stu3.simplifier.net/<your-project>",
"UserName": "Simplifier user name",
"Password": "Password for the above user name",
"BatchSize": 20

}
(continues on next page)

7.1. Firely Server settings 85

Firely Server

(continued from previous page)

]
}

See Conformance Resources and Custom Search Parameters.

7.1.13 Cache of Conformance Resources

"Cache": {
"MaxConformanceResources": 5000

}

Firely Server caches StructureDefinitions and other conformance resources that are needed for (de)serialization and
validation in memory. If more than MaxConformanceResources get cached, the ones that have not been used for the
longest time are discarded. If you frequently encounter a delay when requesting less used resource types, a larger value
may help. If you are very restricted on memory, you can lower the value.

7.1.14 Reindexing for changes in SearchParameters

"ReindexOptions": {
"BatchSize": 100,
"MaxDegreeOfParallelism": 10

},

See Re-index Configuration.

7.1.15 Restrict supported resources and SearchParameters

"SupportedModel": {
"RestrictToResources": ["Patient", "Observation"],
"RestrictToSearchParameters": ["Patient.active", "Observation.patient", "Resource._id",

→˓ "StructureDefinition.url"],
"RestrictToCompartments": ["Patient"]

},

By default, Firely Server supports all ResourceTypes, SearchParameters and CompartmentDefinitions from the speci-
fication. They are loaded from the specification.zip. If you want to limit support, you can do so with the configuration
above. This is primarily targeted towards Facade builders, because they have to provide an implementation for every-
thing that is supported.

Be aware that:

• support for _type and _id must not be disabled

• the Administration API requires support for the ‘url’ SearchParameter on the conformance resourcetypes

• this uses the search parameter names, not the path within the resource - so for example to specify Pa-
tient.address.postalCode as a supported location, you’d use "Patient.address-postalcode".

86 Chapter 7. Configuring Firely Server

http://hl7.org/fhir/R4/patient.html#search
http://hl7.org/fhir/R4/patient.html#search

Firely Server

7.1.16 Enable or disable interactions

By default, the value SupportedInteractions contains all the interactions that are implemented in Firely Server.
But you can disable interactions by removing them from these lists.

"SupportedInteractions": {
"InstanceLevelInteractions": "read, vread, update, delete, history, conditional_

→˓delete, conditional_update, $validate",
"TypeLevelInteractions": "create, search, history, $validate, $snapshot, conditional_

→˓create",
"WholeSystemInteractions": "capabilities, batch, transaction, history, search,

→˓$validate"
},

If you implement a custom operation in a plugin, you should also add the name of that operation at the correct level.
E.g. add $convert to TypeLevelInteractions to allow <base>/<resourcetype>/$convert.

7.1.17 Subscriptions

"SubscriptionEvaluatorOptions": {
"Enabled": true,
"RepeatPeriod": 20000,
"SubscriptionBatchSize" : 1

},

See Subscriptions.

7.1.18 Information model

Firely Server supports the use of multiple information models (currently FHIR STU3 and R4) simultaneously. The
InformationModel section contains the related settings. By default, Firely Server serves both versions from the root
of your web service, defaulting to STU3 when the client does not use Accept or _format to specify either one. Mapping
a path or a subdomain to a specific version creates an additional URI serving only that particular version.

"InformationModel": {
"Default": "Fhir4.0", // For STU3: "Fhir3.0". Information model to use when none is␣

→˓specified in either mapping, the _format parameter or the ACCEPT header.
"Mapping": {
"Mode": "Off"
//"Mode": "Path", // yourserver.org/r3 => FHIR STU3; yourserver.org/r4 => FHIR R4
//"Map": {
// "/R3": "Fhir3.0",
// "/R4": "Fhir4.0"
//}
//"Mode": "Subdomain", // r3.yourserver.org => FHIR STU3; r4.yourserver.org => FHIR␣

→˓R4
//"Map":
// {
// "r3": "Fhir3.0",
// "r4": "Fhir4.0"
// }

(continues on next page)

7.1. Firely Server settings 87

Firely Server

(continued from previous page)

}
},

See Multiple versions of FHIR.

7.1.19 Patient Everything Operation

"PatientEverythingOperation": {
"AdditionalResources": ["Organization", "Location", "Substance", "Medication", "Device

→˓"] // included referenced resources, additional to the Patient compartment resources
},

The Patient $everything operation returns all resources linked to a patient that are listed in the Compartment Patient.
This section allows you to define additional resources that will be included in the resulting searchset bundle.

See Patient $everything.

7.1.20 FHIR Capabilities

"FhirCapabilities": {
"ConditionalDeleteOptions": {
"ConditionalDeleteType": "Single", // Single or Multiple,
"ConditionalDeleteMaxItems": 1

}
},

See Create, read, update, patch, delete.

7.1.21 History size

"HistoryOptions": {
"MaxReturnedResults": 100

}

See History.

7.1.22 Configuring the Firely Server Pipeline

You can add your own plugins to the Firely Server pipeline, or control which of the standard Firely Server plugins are
used for your Firely Server, by changing the PipelineOptions.

"PipelineOptions": {
"PluginDirectory": "./plugins",
"Branches": [
{
"Path": "/",
"Include": [
"Vonk.Core",

(continues on next page)

88 Chapter 7. Configuring Firely Server

Firely Server

(continued from previous page)

"Vonk.Fhir.R3",
"Vonk.Fhir.R4",
// etc.

],
"Exclude": [
]

},
{
"Path": "/administration",
"Include": [
"Vonk.Core",
"Vonk.Fhir.R3",
"Vonk.Fhir.R4",
// etc.

],
"Exclude": [
"Vonk.Core.Operations"

]
}

]
}

It is possible to disable a specific information model by removing Vonk.Fhir.R3 or Vonk.Fhir.R4 from the pipeline

Please note the warning on merging arrays in Hierarchy of settings.

See Firely Server Plugins for more information and an example custom plugin.

7.2 Firely Server settings with Environment Variables

7.2.1 Environment Variables for appsettings

All the settings in Firely Server settings can be overridden by environment variables on your OS. This can be useful
if you want to deploy Firely Server to several machines, each having their own settings for certain options. For Using
Firely Server on Docker using environment variables in the docker-compose file is currently the only way to pass
settings to the container. Or if you don’t want a database password in the appsettings.json file.

The format for the environment variables is:

VONK_<setting_level_1>[:<setting_level_n>]*

So you start the variable name with the prefix ‘VONK_’, and then follow the properties in the json settings, separating
each level with a colon ‘:’. Some examples:

appsettings.json:

"Repository" : "SQL"

environment variable:

VONK_Repository=SQL

To access an embedded value, using the ‘:’ separator:

7.2. Firely Server settings with Environment Variables 89

Firely Server

appsettings.json:

"Administration" : {
"SqlDbOptions" : {

"ConnectionString" : "<some connectionstring>"
}

}

environment variable:

VONK_Repository:SqlDbOptions:ConnectionString=<some connectionstring>

To access an array item, use 0-based indexing:

VONK_PipelineOptions:Branches:0:Exclude:0=Vonk.Repository.Memory
VONK_PipelineOptions:Branches:0:Exclude:1=Vonk.Repository.Sql

Arrays in Environment Variables

Sometimes the appsettings allow for an array of values, e.g. in the setting for AllowedProfiles in Validating incoming
resources. You can address them by appending an extra colon and an index number.

appsettings.json:

"Validation": {
"ValidateIncomingResources": "true",
"AllowedProfiles":
[

http://hl7.org/fhir/StructureDefinition/daf-patient,
http://hl7.org/fhir/StructureDefinition/daf-allergyintolerance

]
},

environment variables:

VONK_Validation:ValidateIncomingResources=true
VONK_Validation:AllowedProfiles:0=http://hl7.org/fhir/StructureDefinition/daf-patient
VONK_Validation:AllowedProfiles:1=http://hl7.org/fhir/StructureDefinition/daf-
→˓allergyintolerance

7.2.2 Log settings with Environment Variables

You can control the Log settings with Environment Variables the same way as the Environment Variables for appsettings
above. The difference is in the prefix. For the log settings we use ‘VONKLOG_’.

logsettings.json

“Serilog”: {
“MinimumLevel”: {

“Override”: {
“Vonk.Configuration”: “Information”,

environment variable:

90 Chapter 7. Configuring Firely Server

Firely Server

VONKLOG_Serilog:MinimumLevel:Override:Vonk.Configuration=Information

7.2.3 Audit log settings with Environment Variables

You can control the Audit log file configuration with Environment Variables the same way as the Environment Variables
for appsettings above. The difference is in the prefix. For the log settings we use ‘VONKAUDITLOG_’.

audit.logsettings.json

“AuditLog”: {
“WriteTo”: [

{
“Name”: “File”, “Args”: {

“path”: “./audit/AuditLog.log”

environment variable:

VONKAUDITLOG_AuditLog:WriteTo:0:Args:path=./other/directory/AuditLog.log

7.2.4 Changing Environment Variables on Windows

In Windows you can change the Environment Variables with Powershell or through the UI. Based on the first example
above:

• In Powershell run: > $env:VONK_Repository="SQL"

• or go to your System, open the Advanced system settings –> Environment variables and create a new variable
with the name VONK_Repository and set the value to “SQL” (you don’t need to enter the quotes here).

7.3 Configure the Administration API

This configuration is part of Firely Server settings.

"Administration": {
"Repository": "SQLite", //Memory / SQL / MongoDb
"MongoDbOptions": {
"ConnectionString": "mongodb://localhost/vonkadmin",
"EntryCollection": "vonkentries"

},
"SqlDbOptions": {
"ConnectionString": "connectionstring to your Firely Server Admin SQL Server␣

→˓database (SQL2012 or newer); Set MultipleActiveResultSets=True",
"SchemaName": "vonkadmin",
"AutoUpdateDatabase": true,
"MigrationTimeout": 1800 // in seconds
//"AutoUpdateConnectionString" : "set this to the same database as 'ConnectionString

→˓' but with credentials that can alter the database. If not set, defaults to the value␣
→˓of 'ConnectionString'"
},
"SQLiteDbOptions": {

(continues on next page)

7.3. Configure the Administration API 91

Firely Server

(continued from previous page)

"ConnectionString": "Data Source=./data/vonkadmin.db",
"AutoUpdateDatabase": true,
"MigrationTimeout": 1800 // in seconds

},
"Security": {
"AllowedNetworks": ["::1"], // i.e.: ["127.0.0.1", "::1" (ipv6 localhost), "10.1.

→˓50.0/24", "10.5.3.0/24", "31.161.91.98"]
"OperationsToBeSecured": ["reindex", "reset", "preload"]

}
},

7.3.1 Choosing your storage

1. Repository: Choose which type of repository you want. Valid values are:

1. Memory

2. SQL

3. SQLite

4. MongoDb

1. MongoDbOptions: Use these with "Repository": "MongoDb", see Using MongoDB for details.

2. SqlDbOptions: Use these with "Repository": "SQL", see Using SQL server for details.

3. SQLiteDbOptions: Use these with "Repository": "SQLite", see Using SQLite for details.

7.3.2 Limited access

1. Security: You can restrict access to the operations listed in OperationsToBeSecured to only be invoked
from the IP addresses listed in AllowedNetworks.

• Operations that can be secured are:

– reindex (see Re-indexing for new or changed SearchParameters)

– reset (see Reset the database)

– preload (see Preloading resources)

– StructureDefinition (restrict both read and write)

– SearchParameter (restrict both read and write)

– ValueSet (restrict both read and write)

– CodeSystem (restrict both read and write)

– CompartmentDefinition (restrict both read and write)

– Subscription: (restrict both read and write, see Subscriptions)

• The AllowedNetworks have to be valid IP addresses, either IPv4 or IPv6, and masks are allowed.

92 Chapter 7. Configuring Firely Server

Firely Server

7.4 Conformance Resources

Firely Server uses Conformance Resources along with some Terminology Resources for various operations:

• SearchParameter: For indexing resources and evaluating search interactions.

• StructureDefinition: For snapshot generation, and of course – along with ValueSet and CodeSystem – for vali-
dation.

• CompartmentDefinition: For access control and Compartment Search.

• ValueSet and CodeSystem: For Terminology services operations.

• StructureMap and ConceptMap: for mapping

You can control the behaviour of Firely Server for these interactions by loading resources of these types into Firely
Server. There are two ways of doing this:

1. With regular FHIR interactions (create, update, delete) on the Firely Server Administration API .

2. With the Import of Conformance Resources.

No matter which method you use, all Conformance resources are persisted in the Administration API database (see
Configure the Administration API for configuring that database), and available through the Administration API endpoint
(<firely-server-endpoint>/administration)

For each resourcetype the base profile is listed in the CapabilityStatement under CapabilityStatement.rest.
resource.profile and (since FHIR R4) all the other profiles are listed under CapabilityStatement.rest.
resource.supportedProfile. So by requesting the CapabilityStatement you can easily check whether your changes
to the StructureDefinitions were correctly processed by Firely Server.

Attention: Please be aware that Conformance Resources have to have a unique canonical url within the FHIR
Version they are loaded, in their url element. Firely Server does not allow you to POST two conformance resources
with the same canonical url. For SearchParameter resources, the combination of base and code must be unique.

Attention: Creates or updates of SearchParameter resources should be followed by a re-index.

Before you delete a SearchParameter, be sure to remove it from the index first, see the exclude parameter in re-
index.

Changes to the other types of resources have immediate effect.

Attention: A StructureDefinition can only be posted in the context of a FHIR Version that matches the Structure-
Definition.fhirVersion. See Multiple versions of FHIR.

Note: The import process will retain any id that is already in the resource, or assign a new id if there is none in
the resource. For FHIR versions other than STU3, a postfix is appended to the id to avoid collissions between FHIR
versions. See also Conformance resources.

7.4. Conformance Resources 93

http://www.hl7.org/implement/standards/fhir/conformance-module.html
http://www.hl7.org/implement/standards/fhir/terminology-module.html

Firely Server

7.4.1 Import of Conformance Resources

The import process of conformance resources runs on every startup of Firely Server, and on demand.

The process uses these locations on disk:

• ImportDirectory;

• ImportedDirectory;

• a read history in the file .vonk-import-history.json, written in ImportedDirectory.

Attention: Please make sure that the Firely Server process has write permission on the ImportedDirectory.

The process follows these steps for each FHIR version (currently STU3 and R4, and experimentally for R5)

1. Load the Default Conformance Resources, if they have not been loaded before.

2. Load the Errata to the specification, if they have not been loaded before.

3. Load Conformance Resources from disk. After reading, the read files are registered in the read history.

4. Load Conformance Resources from simplifier.net. After reading, the project is registered in the read history.
Subsequent reads will query only for resources that have changed since the last read.

Loading the conformance resources from the various sources can take some time, especially on first startup when the
Default Conformance Resources have to be imported. During the import Firely Server will respond with 423 ‘Locked’
to every request to avoid storing or retrieving inconsistent data.

The read history keeps a record of files that have been read, with an MD5 hash of each. If you wish to force a renewed
import of a specific file, you should:

• manually edit the read history file and delete the entry about that file;

• provide the file again in the ImportDirectory (if you deleted it previously - Vonk does not delete it).

7.4.2 Retain the import history

If you run the Administration database on SQL Server or MongoDb it is important to retain the .
vonk-import-history file. This means that if you run Firely Server on something stateless like a Kubernetes pod,
or a webapp service, you need to attach file storage on which to store this file. If you do not do that, Firely Server will
import all the conformance resources on every start.

7.4.3 Running imports with multiple instances

If you run multiple instances of Firely Server each will have its own /administration pipeline. So you need to make
sure that only 1 instance will perform the import. The import at startup will happen when:

• we upgraded to a new version on the FHIR .NET API (always mentioned in the releasenotes)

• you add new resources to the ImportDirectory

• resources retrieved from Simplifier are renewed.

To ensure that only one instance runs the import you can do two things:

1. Make sure only 1 instance is running:

1. Stop Firely Server

94 Chapter 7. Configuring Firely Server

Firely Server

2. Scale down to 1 instance

3. Upgrade Firely Server (by referring to a newer image, or installing newer binaries)

4. Start Firely Server

5. Let it do the import

6. Then scale back up to multiple instances.

2. Exclude the namespace Vonk.Administration.Api.Import from the PipelineOptions in branch
administration on all but one instance.

If you want to use the manual import (<url>/administration/import) you are advised to apply solution nr. 1
above. In the second solution the call may or may not end up on an instance having the Import functionality.

We are aware that this can be a bit cumbersome. On the Firely Server Roadmap is therefore the story to host the
Administration API in its own microservice.

7.4.4 Default Conformance Resources

Firely Server comes with the specification.zip file from the HL7 FHIR API. It contains all the Conformance resources
from the specification. These are loaded and used for validation and snapshot generation by default.

Some of the conformance resources (especially SearchParameters) contain errors in the core specification. We try to
correct all errors in Errata to the specification. You can also override them yourself by:

• updating them through the administration api, as described below;

• providing an altered version in the ImportDirectory, with the same id and canonical url.

Attention: The Core Specification provides almost 4000 Conformance Resources. Depending on the machine it
may take a few minutes to load and index them.

7.4.5 Load Conformance Resources from disk

Firely Server can read SearchParameter and CompartmentDefinition resources from a directory on disk at startup. The
AdministrationImportOptions in the Firely Server settings control from which directory resources are loaded:

"AdministrationImportOptions": {
"ImportDirectory": "<path to the directory you want to import from, default ./vonk-

→˓import>",
"ImportedDirectory": "<path to the directory where imported files are moved to,␣

→˓default ./vonk-imported>"
},

ImportDirectory
All files and zip files will be read, and any conformance resources in them will be imported. By
default, STU3 is assumed. If you have R4 conformance resources, place them in a sibling directory
that has the same name as your “ImportDirectory” with .R4 appended to it – so for example ./
vonk-import.R4.

ImportedDirectory
This directory will contain the read history in the .vonk-import-history.json file. Please note, that this
information is stored directly in the administration database when running on SQlite.

Note that in json you either use forward slashes (/) or double backward slashes (\\) as path separators.

7.4. Conformance Resources 95

Firely Server

7.4.6 Load Conformance Resources from simplifier.net

You are encouraged to manage and publish your profiles and related Conformance Resources on simplifier.net. If you
do that, you can have Firely Server read those. You configure this in the Firely Server settings:

"AdministrationImportOptions": {
"SimplifierProjects": [
{
"Uri": "FHIR endpoint for retrieving StructureDefinitions",
"UserName": "UserName for retrieving the StructureDefinitions",
"Password": "Password for the above user name",
"BatchSize": "<number of resources imported at once, optional - default is 20>"

}
],

}

Uri
must point to a Simplifier project endpoint, see below on how to get this

UserName
your username, if you access a private Simplifier project

Password
password with the username

BatchSize
you normally don’t need to change this parameter

You can load from multiple Simplifier projects by adding them to the list. The environment variable version of this is:

VONK_Administration:SimplifierProjects:0:Uri=<FHIR endpoint for retrieving␣
→˓StructureDefinitions>

Vonk automatically finds the FHIR version for each project and imports it only for the matching FHIR version.

Get a FHIR endpoint for a Simplifier project

Open the project of your choice on https://simplifier.net. There are two limitations:

1. You must have access to the project (so either public or private but accessible to you)

2. The project must be STU3

Then on the overview page of the project click ‘Endpoint’ and copy the value you see there:

By default the endpoint is https://stu3.simplifier.net/<projectname>

96 Chapter 7. Configuring Firely Server

https://simplifier.net
https://simplifier.net

Firely Server

7.4.7 Load Conformance Resources on demand

It can be useful to reload the profiles, e.g. after you have finalized changes in your project. Therefore you can instruct
Firely Server to actually load the profiles from the source(s) with a separate command:

POST http(s)://<firely-server-endpoint>/administration/importResources

The operation will return an OperationOutcome resource, containing details about the number of resources created and
updated, as well as any errors that occurred. Please note that this will also respect the history of already read files, and
not read them again.

7.4.8 Manage Conformance Resources with the Administration API

The Firely Server Administration API has a FHIR interface included, on the https://<firely-server-endpoint>/
administration endpoint. On this endpoint you can do most of the FHIR interactions (create, read, update, delete,
search) on these resourcetypes:

• SearchParameter

• StructureDefinition

• ValueSet

• CodeSystem

• CompartmentDefinition

If you are not permitted to access the endpoint for the resource you want to manage (e.g.
<firely-server-endpoint>/administration/StructureDefinition), Firely Server will return status-
code 403.

Note: You can also do the same interactions on the same resourcetypes on the normal (or ‘data’) FHIR endpoint
https://<firely-server-endpoint>. This will only result in storing, updating or deleting the resource. But it
will not have any effect on the way Firely Server operates.

Example

To add a StructureDefinition to Firely Server

POST <firely-server-endpoint>/administration/StructureDefinition

• In the body provide the StructureDefinition that you want to add.

• The Content-Type header must match the format of the body (application/fhir+json or application/fhir+xml)

If you prefer to assign your own logical id to e.g. StructureDefinition ‘MyPatient’, you can use an update:

PUT <firely-server-endpoint>/administration/StructureDefinition/MyPatient

7.4. Conformance Resources 97

Firely Server

7.5 Validating incoming resources

You can have Firely Server validate all resources that are sent in for create or update. The setting to do that is like this:

"Validation": {
"Parsing": "Permissive", // Permissive / Strict
"Level": "Off", // Off / Core / Full
"AllowedProfiles":
[

"http://hl7.org/fhir/StructureDefinition/daf-patient",
"http://hl7.org/fhir/StructureDefinition/daf-allergyintolerance"

]
},

7.5.1 Parsing

Every incoming resource - xml or json - has to be syntactically correct. That is not configurable.

Beyond that, you can choose between Permissive or Strict parsing. Permissive allows for:

• empty elements (not having any value, child elements or extensions)

• the fhir_comments element

• errors in the xhtml of the Narrative

• json specific:
– array with a single value instead of just a value, or vice versa (json specific)

• xml specific:
– repeating elements interleaved with other elements

– elements out of order

– mis-representation (element instead of attribute etc.)

7.5.2 Validation

You can choose the level of validation:

• Off: no validation is performed.

• Core: the resource is validated against the core definition of the resourcetype.

• Full: the resource is validated against the core definition of the resourcetype and against any profiles it its meta.
profile element.

98 Chapter 7. Configuring Firely Server

Firely Server

7.5.3 Allow for specific profiles

To enable this feature, set Level to Full.

If you leave the list of AllowedProfiles empty, any resource will be allowed (provided it passes the validations set in
Parsing and Level).

When you add canonical urls of StructureDefinitions to this list, Firely Server will:

• check whether the incoming resource has any of these profiles listed in its meta.profile element

• validate the resource against the profiles listed in its meta.profile element.

So in the example above, Firely Server will only allow resources that conform to either the DAF Patient profile or the
DAF AllergyIntolerance profile.

Note that the resource has to declare conformance to the profile in its meta.profile element. Firely Server will not
try to validate a resource against all the Validation.AllowedProfiles to see whether the resource conforms to any
of them, only those that the resource claims conformance to.

7.5.4 Upgrading from < 2.0

Previous to version 2.0.0, the setting was "ValidateIncomingResources":"true" // or false. The corre-
sponding settings since version 2.0.0 are:

• true / no AllowedProfiles => "Level":"Core"

• true / with AllowedProfiles => "Level":"Full", keep the AllowedProfiles as it is.

• false => "Level":"Off"

7.6 Using the In-Memory storage

• Navigate to your Firely Server working directory

• Changing a setting means overriding it as described in Changing the settings.

• Find the Repository setting:

"Repository": "Memory",

• If it is not already set to Memory, do so now.

• You can set SimulateTransactions to “true” if you want to experiment with FHIR transactions. The In-Memory
implementation does not support real transactions, so in case of an error already processed entries will NOT be
rolled back:

"MemoryOptions": {
"SimulateTransactions": "true"

},

7.6. Using the In-Memory storage 99

https://www.hl7.org/fhir/http.html#transaction

Firely Server

7.6.1 Using the In-Memory storage for the Administration API database

This works the same as with the normal Firely Server database, except that you put the settings within the
Administration section

E.g.:

"Administration": {
"Repository": "Memory",
"MemoryOptions": {

"SimulateTransactions": "false"
}

}

Warning: Using the In-Memory storage for the administration layer will cause Firely Server to load the specifica-
tion files on each startup. This takes several minutes, and Firely Server will respond with a ‘423 - Locked’ error to
all requests during that time. As of version 0.7.1 we have implemented support for SQLite, which we recommend
to use instead of the In-Memory storage. See Prefer SQLite for Firely Server Administration for more information.

7.7 Using MongoDB

We assume you already have MongoDB installed. If not, please refer to the MongoDB download pages.

Firely Server can work with MongoDb 4.0 and higher. Since Firely Server (Vonk) version 3.7.0 Firely Server uses the
MongoDb Aggregation Framework heavily, and you are advised to upgrade to MongoDb 4.4 (or newer). In this version
issue SERVER-7568 <https://jira.mongodb.org/browse/SERVER-7568> is solved, so the most selective index is used
more often.

Note: Using the correct Read and Write Concern for your MongoDb replica set is very important:

• Write Concern:

1. For more information, check the MongoDb manual about Write Concern

2. For PSA (Primary-Secondary-Arbiter) replica sets you would want the Write Concern to be “w=1”

3. For PSS (Primary-Secondary-Secondary) replica sets you would want the Write Concern to be
“w=majority”

• Read Concern:

1. For more information, check the MongoDb manual about Read Concern

2. Default Read Concern is local.

• Navigate to your Firely Server working directory

• Changing a setting means overriding it as described in Changing the settings.

• Find the Repository setting:

"Repository": "SQLite",

• Change the setting to MongoDb

• If you have your own database in MongoDB already, change the MongoDbOptions to reflect your settings:

100 Chapter 7. Configuring Firely Server

https://www.mongodb.com/download-center
https://www.mongodb.com/docs/manual/reference/write-concern/
https://www.mongodb.com/docs/manual/reference/read-concern/

Firely Server

"MongoDbOptions": {
"ConnectionString": "mongodb://localhost/vonkdata",
"EntryCollection": "vonkentries"

},

• If MongoDB does not have a database and/or collection by this name, Firely Server will create it for you.

• Find the section called PipelineOptions. Make sure it contains the MongoDB repository in the root path for
Firely Server Data:

"PipelineOptions" :
{

"Branches" : [
"/" : {

"Include" : [
"Vonk.Repository.MongoDb.MongoDbVonkConfiguration"
//...

]
}

]
}

7.7.1 Using MongoDB for the Administration API database

Although we encourage you to use SQLite for Firely Server Administration, you can still use MongoDB for Firely
Server Administration as well.

This works the same as with the normal Firely Server database, except that you:

• put the settings within the Administration section

• provide a different ConnectionString and/or EntryCollection, e.g.:

"Administration": {
"Repository": "MongoDB",
"MongoDbOptions": {

"ConnectionString": "mongodb://localhost/vonkadmin",
"EntryCollection": "vonkadmin"

}
}

• Find the section called PipelineOptions. Make sure it contains the MongoDB repository in the administration
path for Firely Server Administration:

"PipelineOptions" :
{

"Branches" : [
"/administration" : {

"Include" : [
"Vonk.Repository.MongoDb.MongoDbAdministrationConfiguration"
//...

]
}

(continues on next page)

7.7. Using MongoDB 101

Firely Server

(continued from previous page)

]
}

Attention: For MongoDb it is essential to retain the .vonk-import-history.json file. Please read Retain the
import history for details.

7.7.2 MongoDB Transactions

Note: When utilizing MongoDb transactions we strongly advise to use MongoDb v4.2 or higher.

In Firely Server versions prior to v4.9.0 transactions were simulated for development and test purposes. From Firely
Server v4.9.0 and onwards transactions using MongoDb are now fully supported.

With MongoDb transactions, there are a few things to consider:

1. MongoDB supports transactions only for Replica Sets and Sharded Clusters. If you are running Firely Server on
a MongoDb standalone instance you still will be able to upload a transaction bundle, but it will not be processed
within a transaction. I.e.: if an exception occurs with a resource during processing the bundle, any previous
resources will have been persisted to the database and not rolled back.

2. Firely Server currently uses transactions in the following cases:

1. When uploading a transaction bundle.

2. When performing a conditional delete that targets more than one resource.

3. MongoDb transactions in Firely Server always use Read Concern “snapshot” and Write Concern “majority”.

4. MongoDb imposes a transaction runtime limit of 60s. For self-hosted MongoDb instances you can modify this
limit using “transactionLifetimeLimitSeconds”. However, for MongoDb Atlas deployments this limit cannot be
changed.

5. Although MongoDb transactions are supported as early as v4.0, please be aware of the following issue. In
MongoDb v4.0 all write operations are contained in a single oplog entry. The oplog entry for the transaction
must be within the BSON document size limit of 16MB. For v4.2+ every write operation gets its own oplog
entry. This removes the 16MB total size limit for a transaction imposed by the single oplog entry for all its
write operations. Note that each single oplog entry still has a limit of 16 MB. We highly recommend in using
MongoDb v4.2 or higher when using transactions.

6. Please read the official MongoDb documentation for production considerations when using transactions: Mon-
goDb manual

7.7.3 Tips and hints for using MongoDb for Firely Server

1. If searches and/or creates and updates are excessively slow, you may be limited by the IOPS on your MongoDb
deployment (e.g. MongoDb Atlas). Try upgrading it and check the timings again.

2. If for any reason you would like to see how Firely Server is interacting with MongoDb, make the following
adjustments to the Log settings:

1. In the section Serilog.MinimumLevel.Override add "Vonk.Repository.DocumentDb":
"Verbose". Add it before any broader namespaces like Vonk.

102 Chapter 7. Configuring Firely Server

https://www.mongodb.com/docs/manual/core/transactions-production-consideration/
https://www.mongodb.com/docs/manual/core/transactions-production-consideration/

Firely Server

2. In the section on the File sink, change the restrictedToMinimumLevel to Verbose.

3. With regards to Firely Server version and MongoDB version:
1. If you are on a Firely Server (Vonk) version < v3.6, you can keep using MongoDB v4.0 or higher.

2. If you are on Firely Server (Vonk) v3.6 or higher and are unable to migrate to MongoDB 4.4 (relatively
soon), please contact us if you need assistance.

7.8 Using SQL server

There are two ways to create the Firely Server database on a SQL Server instance: Have Firely Server create it for you
entirely or create an empty database and users yourself and have Firely Server create the schema (tables etc.).

In both cases:

• Prepare an instance of SQL Server 2012 or newer. Any edition - including SQL Server Express - will do. The
instance will have a servername and possibly an instancename: server/instance.

• Changing a setting means overriding it as described in Changing the settings.

• Find the Repository setting:

"Repository": "SQLite",

• Change the setting to SQL

• Find the section called SqlDbOptions. It has these values by default:

"SqlDbOptions": {
"ConnectionString": "connectionstring to your Firely Server SQL Server database␣

→˓(SQL2012 or newer); Set MultipleActiveResultSets=True",
"SchemaName": "vonk",
"AutoUpdateDatabase": true,
"MigrationTimeout": 1800 // in seconds
//"AutoUpdateConnectionString" : "set this to the same database as

→˓'ConnectionString' but with credentials that can alter the database. If not set,␣
→˓defaults to the value of 'ConnectionString'"
},

• Find the section called PipelineOptions. Make sure it contains the SQL repository in the root
path for Firely Server Data. For Firely Server versions older than 4.3.0 use Vonk.Repository.
Sql.SqlVonkConfiguration. For Firely Server v4.3.0 and above use Vonk.Repository.Sql.Raw.
KSearchConfiguration:

"PipelineOptions" :
{

"Branches" : [
"/" : {

"Include" : [
//"Vonk.Repository.Sql.SqlVonkConfiguration", // use this for FS␣

→˓versions < v4.3.0
"Vonk.Repository.Sql.Raw.KSearchConfiguration", // use this for FS␣

→˓versions >= v4.3.0
//...

]
(continues on next page)

7.8. Using SQL server 103

Firely Server

(continued from previous page)

}
]

}

• The site connectionstrings.com is useful for determining the correct connectionstring for your environment.

• If you will only use Windows Accounts, you can use the (default) Authentication Mode, which is Windows
Authentication Mode. But if you also want to use SQL Server accounts, you have to run it in Mixed Mode. Refer
to Authentication in SQL Server for more information.

• Although we encourage you to use SQLite for Firely Server Administration, you can still use SQL Server for
Firely Server Administration as well:

"Administration": {
"Repository": "SQL",
"SqlDbOptions": {

"ConnectionString": "Integrated Security=SSPI;Persist Security Info=False;
→˓Initial Catalog=VonkAdmin;Data Source=Server\Instance;
→˓MultipleActiveResultSets=true",

"SchemaName": "vonk",
"AutoUpdateDatabase": true,
"MigrationTimeout": 1800 // in seconds

}
},
//...
"PipelineOptions" :
{

"Branches" : [
"/administration" : {

"Include" : [
//"Vonk.Repository.Sqlite.SqliteTaskConfiguration", // use this for␣

→˓FS versions < v4.3.0
"Vonk.Repository.Sql.Raw.KAdminSearchConfiguration", // use this␣

→˓for FS versions >= v4.3.0
//...

]
}

]
}

7.8.1 Have Firely Server create your database

This option is mainly for experimentation as it effectively requires sysadmin privileges for the connecting user.

• Prepare a login on SQL Server with the following role:

– sysadmin

• Set the SqlDbOptions for the Firely Server database as follows (the values are example values for connecting
with your own Windows login):

"SqlDbOptions": {
"ConnectionString": "Integrated Security=SSPI;Persist Security Info=False;

(continues on next page)

104 Chapter 7. Configuring Firely Server

https://www.connectionstrings.com/sqlconnection/
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authentication-in-sql-server

Firely Server

(continued from previous page)

→˓Initial Catalog=VonkData;Data Source=Server\Instance;MultipleActiveResultSets=true
→˓",

"SchemaName": "vonk",
"AutoUpdateDatabase": true,
"MigrationTimeout": 1800 // in seconds

},

• Set the SqlDbOptions under Administration for the Administration database likewise:

"Administration": {
"Repository": "SQL",
"SqlDbOptions": {

"ConnectionString": "Integrated Security=SSPI;Persist Security Info=False;
→˓Initial Catalog=VonkAdmin;Data Source=Server\Instance;
→˓MultipleActiveResultSets=true",

"SchemaName": "vonk",
"AutoUpdateDatabase": true,
"MigrationTimeout": 1800 // in seconds

}
}

• You don’t need to set AutoUpdateConnectionString since the ConnectionString will already have enough per-
missions.

• Start Firely Server. It will display in its log that it applied pending migrations. After that the database is created
and set up with the correct schema.

• If an upgrade to a new version of Firely requires a migration then a SQL time out might occur, halting the upgrade
and resulting in a rollback of the migration. The duration of the SQL time out for migrations can be controlled
with MigrationTimeout. The default value is 1800 seconds (30 min).

Attention: For SQL Server it is essential to retain the .vonk-import-history.json file. Please read Retain
the import history for details.

7.8.2 Create a database and users by script, and have Firely Server create the
schema

• Log into SQL Server as the Administrator user.

• From the working directory open data01-CreateDatabases.sql

• In SQL Server Management Studio, in the menu select Query|SQLCMD Mode.

• In the script uncomment and adjust the variable names dbName and AdminDbName as well as any other variables
to your own liking.

• Run the script to create both the Firely Server database and the Administration API database.

• From the working directory open data02-CreateDBUser.sql

• In SQL Server Management Studio, in the menu select Query|SQLCMD Mode.

• In the script uncomment and adjust the variables at the top names to your own liking.

7.8. Using SQL server 105

Firely Server

• Run the script to create two users, one with access to the Firely Server database, the other with access to the
Administration database. This script grants the database role db_ddladmin to both users, to enable the AutoUp-
dateDatabase feature. Refer to Overview of permissions for an overview of neccessary authorization for different
features.

• Set the SqlDbOptions for the Firely Server database as follows:

"SqlDbOptions": {
"ConnectionString": "User Id=<dbUserName>;Password=<dbPassword>;Initial Catalog=

→˓<DataDbName>;Data Source=server\\instance;MultipleActiveResultSets=True",
"SchemaName": "vonk",
"AutoUpdateDatabase": "true"

}

• If you have set up a different user for running the AutoUpdateDatabase feature, you can provide that:

"SqlDbOptions": {
"ConnectionString": "User Id=<dbUserName>;Password=<dbPassword>;Initial Catalog=

→˓<DataDbName>;Data Source=server\\instance;MultipleActiveResultSets=True",
"SchemaName": "vonk",
"AutoUpdateDatabase": "true"
"AutoUpdateConnectionString": "User Id=<updateUserName>;Password=

→˓<updatePassword>;Initial Catalog=<DataDbName>;Data Source=server\\instance;
→˓MultipleActiveResultSets=True",
}

• Set the SqlDbOptions under Administration for the Administration database likewise:

"Administration" : {
"Repository": "SQL",
"SqlDbOptions": {

"ConnectionString": "User Id=<AdminDbUserName>;Password=<AdminDbPassword>;
→˓Initial Catalog=<AdminDbName>;Data Source=server\\instance;
→˓MultipleActiveResultSets=True",

"SchemaName": "vonk",
"AutoUpdateDatabase": "true"

}
}

• For the administration you can also provide different credentials for performing the auto update:

"Administration" : {
"Repository": "SQL",
"SqlDbOptions": {

"ConnectionString": "User Id=<AdminDUserName>;Password=<AdminDbPassword>;
→˓Initial Catalog=<AdminDbName>;Data Source=server\\instance;
→˓MultipleActiveResultSets=True",

"SchemaName": "vonk",
"AutoUpdateDatabase": "true"
"AutoUpdateConnectionString": "User Id=<updateAdminUserName>;Password=

→˓<updateAdminPassword>;Initial Catalog=<AdminDbName>;Data Source=server\\instance;
→˓MultipleActiveResultSets=True",

}
}

106 Chapter 7. Configuring Firely Server

Firely Server

7.8.3 Run schema migrations manually

It is possible to disable automatic migrations for the database, by setting AutoUpdateDatabase to false. Regardless,
with a new version, the schema must be upgraded for the application to run. With auto-updating disabled, an error will
halt the startup. The error contains the version of the current schema and the required schema version of the server.
You must use the SQL script(s) in the /sqlserver folder to update your database to the required version.

7.8.4 Overview of permissions

This table lists the permissions needed to perform specific actions on the SQL database. Recommended roles are listed
in the third column. Note that you can create your own database roles with the required permissions in order to execute
finely granulated control over permissions.

Table 1: Permissions and Roles
Action Required SQL

Permission
Recom-
mended
SQL Role

Notes

Create Database ‘Create any
database’

sysadmin

AutoUpdateDatabase feature includ-
ing application of pending migra-
tions

‘Alter Trace’
+ ‘Alter any
database’

db_ddladmin Applies to the normal Firely Server
database and its administration
database

AutoUpdateDatabase feature ex-
cluding application of pending
migrations

‘Alter Trace’ db_ddladmin

Read resources db_datareader
Write resources db_datawriter
Execute ResetDb feature db_ddladmin Only applies to the normal Firely

Server database

If the AutoUpdate feature is enabled, we recommend creating two users in order to achieve maximum security while
keeping the configuration simple:

• User 1 with the ‘db_datareader’ and ‘db_datawriter’ and ‘db_ddladmin’ roles (This user should be used in the
AutoUpdateConnectionString)

• User 2 with the ‘db_datareader’ and ‘db_datawriter’ roles as well as ‘Alter Trace’ permissions for day to day
usage (This user should be used in the ConnectionString)

7.9 Using SQLite

SQLite is a file based database engine. The engine itself does not run separately on the server, but in-process in the
application, Firely Server in this case.

For more background on SQLite please refer to the SQLite documentation.

SQLite is the default configuration of Firely Server. For the Administration database there is little reason to change
this. For the actual runtime data, (the ‘Firely Server database’) itself, you may run into limitations of SQLite if you put
it through its paces. You may find one of the other repositories a better fit then. You can safely use different storage
engines for Firely Server Data and Firely Server Administration.

7.9. Using SQLite 107

https://sqlite.org/about.html

Firely Server

7.9.1 Prefer SQLite for Firely Server Administration

Until Firely Server (Vonk) version 0.7.0 you could use any of the storage engines for both Firely Server Data and Firely
Server Administration. Starting with Firely Server (Vonk) 0.7.1 you are encouraged to use SQLite for Firely Server
Administration. Over time we will deprecate support for running Firely Server Administration on the SQL Server,
MongoDb and Memory storage engines. For Firely Server Data you can of course still use the storage engine of your
preference.

Firely Server Administration poses very limited stress on its storage engine, therefore SQLite is adequate. And it
provides several advantages:

• Runs out of the box: SQLite requires no installation of a database engine, but still provides durable storage
(unlike the Memory storage). Thus, you don’t need to setup anything to run Firely Server Administration. And
you can download the Firely Server binaries and run them without any further configuration.

• Flexible on updates: Many of the features that we will add to Firely Server require changes to the schema of the
Administration database. By only supporting SQLite for this, we can provide these features to you more quickly.

• Readymade database: In the other storage engines, the conformance resources from the specification had to be
imported before Firely Server could start. This would take a couple of minutes. Because SQLite is file based,
we can run the import process for you and provide you with a readymade Administration database.

• Runs with Facades: perhaps the most important feature. If you build a Firely Server Facade, the facade will not
provide support for hosting conformance resources. With Firely Server Administration on SQLite the facade has
its own storage and you can use Firely Server Administration out of the box. This enables e.g. validation against
your custom resources (that can be imported from your Simplifier project), subscriptions, and other use cases.

7.9.2 Settings for using SQLite for Firely Server Data

• Changing a setting means overriding it as described in Changing the settings.

• Find the Repository setting and set it to SQLite if it not already set to that:

"Repository": "SQLite",

• Find the section called SQLiteDbOptions. It has these values by default:

"SQLiteDbOptions": {
"ConnectionString": "Data Source=./data/vonkdata.db",
"AutoUpdateDatabase": true

},

Firely Server will create the database file, but please make sure the directory already exists.

• Find the section called PipelineOptions. Make sure it contains the SQLite repository in the root path:

"PipelineOptions" :
{

"Branches" : [
"/" : {

"Include" : [
"Vonk.Repository.SQLite.SqliteVonkConfiguration"
//...

]
},
//...

(continues on next page)

108 Chapter 7. Configuring Firely Server

Firely Server

(continued from previous page)

]
}

7.9.3 Settings for using SQLite for Firely Server Administration

• Set the SqlDbOptions under Administration for the Administration database similar to those above:

"Administration" : {
"Repository": "SQLite",
"SQLiteDbOptions": {

"ConnectionString": "Data Source=./data/vonkadmin.db",
"AutoUpdateDatabase": "true"

}
}

Firely Server will create the database file, but please make sure the directory already exists.

• Find the section called PipelineOptions. Make sure it contains the SQLite repository in the administration
path:

"PipelineOptions" :
{

"Branches" : [
"/": {

//...
},
"/administration" : {

"Include" : [
"Vonk.Repository.SQLite.SqliteAdministrationConfiguration"
//...

]
}

]
}

7.9. Using SQLite 109

Firely Server

7.9.4 Administration import history in SQLite

When Firely Server imports Conformance resources, it keeps record of what is has imported. Unlike the SQL Server
and MongoDb engines, the SQLite storage engine does not use the .vonk-import-history.json file for that. Instead, in
SQLite the import history is stored within the Administration database itself.

7.10 Configure http and https

You can enable http and/or https and adjust the port numbers for them in Firely Server settings.

7.10.1 Changing the port number

By default Firely Server will run on port 4080 of your system. You can change the port setting by overriding it as
described in Changing the settings:

• Navigate to your Firely Server working directory

• Find this setting:

"Hosting": {
"HttpPort": 4080

}

• Change the number to the port number you want

7.10.2 Changing from http to https

If you need your server to run on https instead of http, follow these steps:

• Navigate to the location where you extracted the Firely Server files.

• Find these settings:

"Hosting": {
"HttpPort": 4080,
"HttpsPort": 4081, // Enable this to use https
"CertificateFile": "<your-certificate-file>.pfx", //Relevant when␣

→˓HttpsPort is present
"CertificatePassword" : "<cert-pass>" // Relevant when HttpsPort is␣

→˓present
},

• Uncomment the lines for HttpsPort, CertificateFile and CertificatePassword.

• Set the HttpsPort to the port of your liking (standard https port is 443)

• Set CertificateFile to the location of the .pfx file that contains the certificate for your site

• Set CertificatePassword to the password for the certificate file.

Note: We recommend setting this value as an environment variable for security reasons:

VONK_Hosting:CertificatePassword=<password>

110 Chapter 7. Configuring Firely Server

Firely Server

To set this:

• In Powershell run: > $env:VONK_Hosting:CertificatePassword="my_password" where
my_password is the password for the .pfx file

• or go to your System, open the Advanced system settings –> Environment variables and create a new
variable with the name VONK_Hosting:CertificatePassword and the value set to your password

• You can choose to comment-out the HttpPort setting, so Firely Server will no longer be available through
unsecured http.

7.11 Cross Origin Resource Sharing (CORS)

CORS is enabled in Firely Server. Since Firely Server provides an API that is expected to be consumed by applications
from different domains, CORS is enabled for any origin. Currently there is no setting to control this behaviour.

7.12 Log settings

Firely Server uses Serilog for logging. The logging settings are controlled in json configuration files called
logsettings(.*).json. The files are read in a hierarchy, exactly like the appsettings files are. Firely Server comes
with default settings in logsettings.default.json. You can adjust the way Firely Server logs its information by
overriding these default settings in logsettings.json or logsettings.instance.json. You need to create this
file yourself.

Alternatively you can control Log settings with Environment Variables.

Firely Server by default does nog log any Patient Health Information data, regardless of the level of the log. The only
PHI part that can be included in the log is the User Name, when running with Smart authorization (so the user is
identified) and including this part in the outputTemplate (see below).

7.12.1 Changing the log event level

Serilog defines several levels of log events. From low to high, these are Verbose, Debug, Information, Warning,
Error and Fatal. You can set the minimum level you want to log, meaning that events for that level or higher will be
logged. By default, Firely Server uses Error as the minimum level of recording information.

To change the level of logging, follow these steps:

• Find this setting:

"MinimumLevel": {
"Default": "Error",

},

• Change the setting for Default from Error to the level you need, from the choice of Verbose, Debug,
Information, Warning, Error and Fatal.

You can deviate from the default minimum level for specific namespaces. You do this by specifying the namespace and
the log event level you would like for this namespace, for example:

"MinimumLevel": {
"Default": "Error",
"Override": {

(continues on next page)

7.11. Cross Origin Resource Sharing (CORS) 111

https://serilog.net/

Firely Server

(continued from previous page)

"Vonk": "Warning"
}

},

Some additional namespaces you might want to log are:

• Vonk.Configuration to log configuration information on startup

• Vonk.Core.Licensing to show license information in your logs

• Vonk.Repository.Sql.Raw to log SQL repository events for Firely Server v4.3.0 and above

• Vonk.Repository.Sql to log SQL repository events for Firely Server v4.2.0 and below

• Vonk.Repository.Document.Db to log MongoDB repository events

• Vonk.Repository.Memory to log memory database repository events

• Vonk.Core.Repository.EntryIndexerContext, set it to "Error" if you have excessive warnings about
indexing (mostly when importing Synthea <https://synthea.mitre.org/downloads> data)

• Microsoft to log events from the Microsoft libraries

• Microsoft.AspNetCore.Diagnostics to report request handling times

• System to log events from the System libraries

Please note that the namespaces are evaluated in order from top to bottom, so more generic ‘catch all’ namespaces
should be at the bottom of the list. So this will log events on Vonk.Repository.Sql.Raw on Information level:

"MinimumLevel": {
"Default": "Error",
"Override": {

"Vonk.Repository.Sql.Raw": "Information",
"Vonk": "Warning"

}
},

But in this (purposefully incorrect) example the Warning level on the Vonk namespace will override the Information
level on the Vonk.Repository.Sql.Raw namespace:

"MinimumLevel": {
"Default": "Error",
"Override": {

"Vonk": "Warning",
"Vonk.Repository.Sql.Raw": "Information"

}
},

112 Chapter 7. Configuring Firely Server

Firely Server

7.12.2 Changing the sink

Another setting you can adjust is WriteTo. This tells Serilog which sink(s) to log to. Serilog provides several sinks,
and for Firely Server you can use Console, File, ApplicationInsights and Seq. All of which can be wrapped in
an Async sink to avoid blocking Firely Server when waiting for the sink to process the log statements.

Console

The Console sink will write to your shell.

• Find the WriteTo setting:

"WriteTo": [
{

"Name": "Async",
"Args": {

"configure": [
{
"Name": "Console",
"Args": {

"restrictedToMinimumLevel": "Information",
"outputTemplate": "{Timestamp:yyyy-MM-dd␣

→˓HH:mm:ss.fff zzz} {UserId} {Username} [{Level}] [ReqId: {RequestId}] {Message}
→˓{NewLine}{Exception}"

}
}

]
}

},
{

//Settings for other sinks
}

The Console is notoriously slow at processing log statements, so it is recommended to limit the number of statements
for this sink. Use the restrictedToMinimumLevel to do so. Also, if you are on Windows, the Powershell command
window appears to be faster than the traditional Command Line window.

Settings for the Console sink:

• outputTemplate: What information will be in each log line. Besides regular text you can use placeholders for
information from the log statement:

– {Timestamp:yyyy-MM-dd HH:mm:ss.fff zzz}: When this was logged, with formatting

– {UserId}: Technical id of the logged in user - if applicable

– {Username}: Name of the logged in user - if applicable

– {Application}: Name of the application (in case other applications are logging to the same sink). Is set
to Vonk at the bottom of the logsettings file

– {Level}: Level of the log, see the values in Changing the log event level

– {MachineName}: Name of the machine hosting the Firely Server instance. Especially useful when running
multiple instances all logging to the same file.

– {RequestId}: Unique id of the web request, useful to correlate log statements

– {Message}}: Actual message being logged

7.12. Log settings 113

Firely Server

– {Exception}: If an error is logged, Firely Server may include the original exception. That is then format-
ted here.

– {SourceContext}: The class from which the log statement originated (this is usually not needed by end
users).

– {NewLine}: Well, ehh, continue on the next line

• restrictedToMinimumLevel: Only log messages from this level up are sent to this sink.

File

The File sink will write to a file, possibly rolling it by interval or size.

• Find the WriteTo setting:

"WriteTo": [
{
{

//Settings for Console
}
},
{
"Name": "Async",
"Args": {

"configure": [
{
"Name": "File",
"Args": {

"path": "%temp%/vonk.log",
"rollingInterval": "Day",
"fileSizeLimitBytes": "",
"retainedFileCountLimit": "7",
"outputTemplate": "{Timestamp:yyyy-MM-dd HH:mm:ss.

→˓fff zzz} {UserId} {Username} [{Application}] [{Level}] [Machine: {MachineName}]␣
→˓[ReqId: {RequestId}] {Message}{NewLine}{Exception}",

"restrictedToMinimumLevel": "Verbose"
}
}

]
}
},
{

//Settings for Azure ApplicationInsights
}

• Under File, change the location of the logfiles by editing the value for path. For example:

{
"Name": "RollingFile",
"Args": {

"path": "c:/logfiles/vonk.log"
}

},

Other values that you can set for the File log are:

114 Chapter 7. Configuring Firely Server

Firely Server

– rollingInterval: When this interval expires, the log system will start a new file. The start datetime of
each interval is added to the filename. Valid values are Infinite, Year, Month, Day, Hour, Minute.

– fileSizeLimitBytes: Limit the size of the log file, which is 1GB by default. When it is full, the log
system will start a new file.

– retainedFileCountLimit: If more than this number of log files is written, the oldest will be deleted.
Default value is 31. Explicitly setting it to an empty value means files are never deleted.

– outputTemplate: as described for Console.

– restrictedToMinimumLevel: as described for Console.

Application Insights

Firely Server can also log to Azure Application Insights (“Application Insights Telemetry”). What you need to do:

1. Create an Application Insights instance on Azure.

2. Get the InstrumentationKey from the Properties blade of this instance.

3. Add the correct sink to the logsettings.json:

"WriteTo": [
{

"Name": "ApplicationInsightsTraces",
"Args": {

"instrumentationKey": "<the key you copied in step 2>",
"restrictedToMinimumLevel": "Verbose" //Or a higher level

}
},

],

4. This also enables Dependency Tracking for access to your database. This works for both SQL Server and Mon-
goDB. And for the log sent to Seq if you enabled that.

5. If you set the level for Application Insights to Verbose, and combine that with Database details, you get all the
database commands right into Application Insights.

Seq

Seq is a web interface to easily inspect structured logs.

For the Seq sink, you can also specify arguments. One of them is the server URL for your Seq server:

"WriteTo": [
{

"Name": "Seq",
"Args": { "serverUrl": "http://localhost:5341" }

}

• Change serverUrl to the URL of your Seq server

• restrictedToMinimumLevel: as described for Console.

7.12. Log settings 115

https://datalust.co/seq
https://datalust.co/seq

Firely Server

7.12.3 Database details

Whether you use MongoDB or SQL Server, you can have Firely Server log in detail what happens towards your database.
Just set the appropriate loglevel to ‘Verbose’:

"MinimumLevel": {
"Default": "Error",
"Override": {

"Vonk.Repository": "Verbose"
}

},

You can also control the logsettings for the different repositories more finely granulated:

"MinimumLevel": {
"Default": "Error",
"Override": {

// (for versions before FS 4.6.0)
"Vonk.Repository.Sql": "Verbose",
// OR (for FS 4.6.0 or later AND if Sql.Raw is enabled)
"Vonk.Repository.Sql.Raw": "Verbose",
// OR (for MongoDb)
"Vonk.Repository.Document.Db": "Verbose",
// OR (for SQLite)
"Vonk.Repository": "Verbose",
"Microsoft.EntityFrameworkCore": "Verbose"

}
},

Remember to adjust your sink settings so that "restrictedToMinimumLevel": "Verbose" is set. If you do so
you probably don’t want all this detail in your console sink, so you can limit the level for that, see Console above.

SQL query parameter logging

It might be useful to log SQL queries that Firely Server executes against your database. You can get even more insights
into what is happening when SQL query parameter values also get logged. However, this cannot be enabled by default
due to data privacy concerns.

You can enable SQL query parameter values logging by setting the LogSqlQueryParameterValues to true for the
corresponding database in your appsettings.instance.json. Example:

{
"Administration": {

"SqlDbOptions": {
"ConnectionString": "<connection string>",
"LogSqlQueryParameterValues": true // Add this line to your␣

→˓config file to log SQL query param values for your SQL Server Administration database
}

},
// OR:
{

"SQLiteDbOptions": {
"ConnectionString": "<connection string>",
"LogSqlQueryParameterValues": true // Add this line to your␣

(continues on next page)

116 Chapter 7. Configuring Firely Server

Firely Server

(continued from previous page)

→˓config file to log SQL query param values for your Sqlite Data database
}

}
}

7.12. Log settings 117

Firely Server

118 Chapter 7. Configuring Firely Server

CHAPTER

EIGHT

FIRELY SERVER DEPLOYMENT OPTIONS

Firely Server can be deployed as:

• Binaries, see Getting Started

• As Docker image, see Using Firely Server on Docker

• With a helm chart, see Using Firely Server on Kubernetes with a Helm chart

• With Yellow Button - Firely Server for your Simplifier project

The Binaries can be deployed on your own machines and on cloud services. For deployment on Azure we included
instructions.

In order to test the Access control and SMART you will need to Set up an Identity Provider.

8.1 Using Firely Server on Docker

We have created a Docker image for Firely Server, so you can run the server in any environment that supports Docker.
For this section we assume you have Docker installed on your system. If you want to install Docker for Windows, please
read docker_win for specific installation details.

8.1.1 Getting started

Before you can run Firely Server, you will need to pull the Docker Firely Server container and request a license.

1. Open your favourite command line tool and execute this command: > docker pull firely/server

2. Go to the Simplifier website, login and download your evaluation license.

3. Create a working directory for Firely Server and place the license file there.

Warning: If you use Docker, you may want to run multiple instances of Firely Server (e.g. with Kubernetes).
Read Running imports with multiple instances for caveats with the Administration endpoint.

Note: Since Firely Server version 4.7.0, the Docker image name has changed from simplifier/vonk to firely/server. The
old image name will be maintained for a few months to allow for a smooth transition. When updating to version 4.7.0,
you should start to use the new image name. Versions 4.6.2 and older will stay available (only) on ‘simplifier/vonk’.

119

https://simplifier.net
https://hub.docker.com/repository/docker/simplifier/vonk
https://hub.docker.com/r/firely/server

Firely Server

8.1.2 Running a Docker Firely Server in SQLite mode

The easiest and the default way to run a Docker Firely Server container is to run Firely Server in SQLite repository
mode. Note that this is not the most performant mode - see MongoDB and SQL Server options below for that.

Open your command prompt and execute this command: > docker images firely/server

You will get a list that looks like:

Navigate to your working directory for Firely Server and run the container with this command:

• in cmd.exe: docker run -d -p 8080:4080 --name firely.server -v %CD%/
firelyserver-license.json:/app/firelyserver-license.json firely/server

• in Powershell: docker run -d -p 8080:4080 --name firely.server -v ${PWD}/
firelyserver-license.json:/app/firelyserver-license.json firely/server

If your license file has a different name, use that name instead of firelyserver-license on the left side of the -v
parameter in the command above. E.g. -v ${PWD}/my-fancy-license.json:/app/firelyserver-license.
json

This will spin up a Firely Server container. It maps the host port 8080 to the container port 4080 with the switch -p
8080:4080. It will give the container the name firely.server with the switch --name firely.server. Furthermore it
mounts the local licensefile into the /app directory, which is the directory where Firely Server resides in the container.
Finally it will run the container in background mode with the switch -d.

To test whether the container is running correctly, type the command: > docker ps

You can also take a look at the logs for Firely Server with: > docker logs firely.server

Open a browser and use the address http://localhost:8080/. This will show the landing page of Firely Server.

To stop the container just type: > docker stop firely.server And to start it again: > docker start firely.
server To completely remove the container: > docker rm firely.server

Adjust settings when running in a Docker container

In the paragraph above we showed how to use -v to mount the license file into the app directory. We can use the same
technique to mount a custom settings file or logsettings file. Or a directory to host the SQLite database outside of the
container. Or have the logfile written to your working directory. Below is a full example using PowerShell. For creating
appsettings.instance.json refer to Firely Server settings. For creating logsettings.instance.json refer to
Log settings.

120 Chapter 8. Firely Server deployment options

Firely Server

appsettings.instance.json

{
"SQLiteDbOptions": {
"ConnectionString": "Data Source=./resourcedata/vonkdata.db;Cache=Shared",
"AutoUpdateDatabase": true

}
}

logsettings.instance.json

Settings for console and levels not included for brevity.

{
"Serilog": {
"WriteTo": [

{
"Name": "Async",
"Args": {
"configure": [

{
"Name": "File",
"Args": {

"path": "./log/vonk.log",
"rollingInterval": "Day",
"fileSizeLimitBytes": "",
"retainedFileCountLimit": "7",
"outputTemplate": "{Timestamp:yyyy-MM-dd HH:mm:ss.fff zzz}

→˓{UserId} {Username} [{Application}] [{Level}] [Machine: {MachineName}] [ReqId:
→˓{RequestId}] {Message}{NewLine}{Exception}",

"restrictedToMinimumLevel": "Information"
}

}
]

}
},

],
"Enrich": ["FromLogContext", "WithMachineName", "WithThreadId"],
"Properties": {
"Application": "Firely Server",
"Environment": "Default"

}
}

}

8.1. Using Firely Server on Docker 121

Firely Server

Powershell

mkdir logs
mkdir resourcedata //do not use 'data' - the administration database is already in that␣
→˓folder in the container
//create the appsettings.instance.json above
//create the logsettings.instance.json above

docker run -d -p 8080:4080 --name firely.server `
-v ${PWD}/firelyserver-license.json:/app/firelyserver-license.json `
-v ${PWD}/appsettings.instance.json:/app/appsettings.instance.json `
-v ${PWD}/logsettings.instance.json:/app/logsettings.instance.json `
-v ${PWD}/resourcedata:/app/resourcedata `
-v ${PWD}/log:/app/log `
firely/server

You should see a vonkdata.db appear in the ./resourcedata folder, and a log file in the ./log folder. From
here you can experiment with other settings. You can also easily keep different settings files side-by-side, mapping
the one you want to test into the container, e.g. -v ${PWD}/some-weird-settings.json:/app/appsettings.
instance.json.

Mounting a your custom plugins folder into the container

In a similar way as described above, you can mount your custom plugins into the container. However, this will replace
the default plugings; they need to be added manually.

• Download the binaries of your server version from https://downloads.simplifier.net/firely-server/versions/

• Create a plugin folder, including the default plugins (extracted from the downloaded archive)

• Create appsettings.instance.json with the appropriate Pipeline section (see Configure the pipeline)

• Mount the files and folder as shown below

docker run -d -p 8080:4080 --name firely.server `
-v ${PWD}/firelyserver-license.json:/app/firelyserver-license.json `
-v ${PWD}/appsettings.instance.json:/app/appsettings.instance.json `
-v ${PWD}/plugins:/app/plugins `
firely/server

The server is now accessible on http://localhost:8080/.

Spinning up with a docker-compose file

Another way to spin up a Firely Server container is to use a docker-compose file. The above example can also be
established by the following docker-compose-sqlite.yml:

1 version: '3'
2

3 services:
4

5 vonk-web:
6 image: firely/server

(continues on next page)

122 Chapter 8. Firely Server deployment options

https://downloads.simplifier.net/firely-server/versions/

Firely Server

(continued from previous page)

7 ports:
8 - "8080:4080"
9 environment:

10 - VONK_Repository=SQLite
11 - VONK_Administration:Repository=SQLite
12 - VONK_License:LicenseFile=./license/firelyserver-license.json
13 volumes:
14 - .:/app/license

Save the text above to a file in your working directory with the name docker-compose.sqlite.yml and then run the
following command: > docker-compose -f docker-compose.sqlite.yml up -d

If your license file has a different name, use that name instead of firelyserver-license in the text above - but make
sure to keep ./license as that maps to a Docker volume inside the container.

To stop the container, run: > docker-compose -f docker-compose.sqlite.yml down

Note: Strictly the settings for VONK_Repository and VONK_Administration are not needed here, since SQLite
is the default setting. The settings are included to show where to configure the type of database to use. Much more
information on that topic is in the paragraphs below.

8.1.3 Running Docker with a SQL Server container

Firely Server can use also other repositories than Memory, for example SQL Server. This section describes how to spin
up a Firely Server container and a SQL Server container. We will use docker-compose to achieve this.

Warning: SQL Server container uses at least 3.25 GB of RAM. Make sure to assign enough memory to the Docker
VM if you’re running on Docker for Mac or Windows.

Warning: If you also run the Administration database on SQL Server, please read Retain the import history.

1 version: '3'
2

3 services:
4 vonk-web:
5 image: firely/server
6 ports:
7 - "8080:4080"
8 depends_on:
9 - vonk-sqlserver-db

10 environment:
11 - VONK_Repository=SQL
12 - VONK_SqlDbOptions:ConnectionString=Initial Catalog=VonkData;Data Source=vonk-

(continues on next page)

8.1. Using Firely Server on Docker 123

Firely Server

(continued from previous page)

→˓sqlserver-db,1433;User ID=sa;Password=SQLServerStrong(!)Password*
13 - VONK_SqlDbOptions:SchemaName=vonk
14 - VONK_SqlDbOptions:AutoUpdateDatabase=true
15 - VONK_SqlDbOptions:AutoUpdateConnectionString=Initial Catalog=VonkData;Data␣

→˓Source=vonk-sqlserver-db,1433;User ID=sa;Password=SQLServerStrong(!)Password*
16 - VONK_Administration:Repository=SQL
17 - VONK_Administration:SqlDbOptions:ConnectionString=Initial Catalog=VonkAdmin;Data␣

→˓Source=vonk-sqlserver-db,1433;User ID=sa;Password=SQLServerStrong(!)Password*
18 - VONK_Administration:SqlDbOptions:SchemaName=vonkadmin
19 - VONK_Administration:SqlDbOptions:AutoUpdateDatabase=true
20 - VONK_Administration:SqlDbOptions:AutoUpdateConnectionString=Initial␣

→˓Catalog=VonkAdmin;Data Source=vonk-sqlserver-db,1433;User ID=sa;
→˓Password=SQLServerStrong(!)Password*

21 - VONK_License:LicenseFile=./license/firelyserver-license.json
22 volumes:
23 - .:/app/license
24

25 vonk-sqlserver-db:
26 image: mcr.microsoft.com/mssql/server
27 ports:
28 - "1433:1433"
29 environment:
30 - ACCEPT_EULA=Y
31 - SA_PASSWORD=SQLServerStrong(!)Password*
32 healthcheck:
33 test: /opt/mssql-tools/bin/sqlcmd -S localhost -U sa -P 'SQLServerStrong(!

→˓)Password*' -Q 'SELECT 1 FROM VonkData.sys.tables'
34 interval: 1m30s
35 timeout: 10s
36 retries: 3

Save the text above to a file in your working directory with the name docker-compose.mssqlserver.yml. Make
sure your Firely Server license file is named firelyserver-license.json and is residing in your working directory
(see Getting started on how to obtain the license), not in a subdirectory named license (that is an internal directory
inside the container). If your license file has a different name, use that name instead of firelyserver-license in
the text above.

Warning: Without specifying MSSQL_PID, the server will run SQL Server Developer Edition. For production,
you are responsible for obtaining the appropriate license (and setting the value accordingly). See https://hub.docker.
com/_/microsoft-mssql-server for more information.

Note: The current configuration will use SQL Server 2019. There are other versions of SQL server available, which
can be selected by adding a tag to the value of vonk-sqlserver-db:image (e.g. mcr.microsoft.com/mssql/server:2022-
latest) in the yml-file. We have successfully tested 2017-latest, 2019-latest and 2022-latest.

Then use this command to spin up a Firely Server container and SQL container: > docker-compose -f
docker-compose.mssqlserver.yml up -d

Open a browser and use the address http://localhost:8080/. This will show the landing page of Firely Server.

124 Chapter 8. Firely Server deployment options

https://hub.docker.com/_/microsoft-mssql-server
https://hub.docker.com/_/microsoft-mssql-server

Firely Server

Warning: Wait for about 2 minutes, because it takes a while to fire up the SQL container

8.1.4 Running Docker with a SQL Server on host

Another possibility is to run a Firely Server container with a SQL Server repository on the host. You will need a
Microsoft SQL Server running on your host. The version of SQL Server must at least be version 2012.

Warning: If you also run the Administration database on SQL Server, please read Retain the import history.

To run the Firely Server container we will use the following docker-compose file:

1 version: '3'
2

3 services:
4

5 vonk-web:
6 image: firely/server
7 ports:
8 - "8080:4080"
9 environment:

10 - VONK_Repository=SQL
11 - VONK_SqlDbOptions:ConnectionString=Database=VonkData;Server=my_host\

→˓<myInstanceName>;User ID=<myUser>;Password=<myPassword>
12 - VONK_SqlDbOptions:SchemaName=vonk
13 - VONK_SqlDbOptions:AutoUpdateDatabase=true
14 - VONK_SqlDbOptions:AutoUpdateConnectionString=Database=VonkData;Server=my_host\

→˓<myInstanceName>;User ID=<DLLUser>;Password=<myPassword>
15 - VONK_Administration:Repository=SQL
16 - VONK_Administration:SqlDbOptions:ConnectionString=Database=VonkAdmin;Server=my_

→˓host\<myInstanceName>;User ID=<myUser>;Password=<myPassword>
17 - VONK_Administration:SqlDbOptions:SchemaName=vonkadmin
18 - VONK_Administration:SqlDbOptions:AutoUpdateDatabase=true
19 - VONK_Administration:SqlDbOptions:AutoUpdateConnectionString=Database=VonkAdmin;

→˓Server=my_host\<myInstanceName>;User ID=<DLLUser>;Password=<myPassword>
20 - VONK_License:LicenseFile=./license/firelyserver-license.json
21 volumes:
22 - .:/app/license
23 extra_hosts:
24 - "my_host:192.0.2.1"

Save the text above to a file in your working directory with the name docker-compose.mssqlserver_host.yml.
Before we spin up the container we have to adjust the docker-compose.mssqlserver_host.yml:

• On lines 11, 14, 16 and 19 the connection string to the database server is stated. Change the Server to your
database server and instance name.

• Also change the User ID and Password on lines 11, 14, 16 and 19 to your credentials.

• Furthermore we have to tell Docker which IP address the host uses. This is done on line 24. In this case the host
(named my_host) uses IP address 192.0.2.1. Change this to the appropriate address.

After saving your settings, make sure your Firely Server license file is named firelyserver-license.json and
is residing in your working directory (see Getting started on how to obtain the license), not in a subdirectory

8.1. Using Firely Server on Docker 125

Firely Server

named license (that is an internal directory inside the container). Or use the name of your license file instead of
firelyserver-license in the text above.

You can run the Firely Server container as follows: > docker-compose -f docker-compose.
mssqlserver_host.yml up -d

A database will automatically be created if is not already present on the database server. See this page for an overview
of permissions the database user needs for creating the database and/or schema.

Open a browser and use the address http://localhost:8080/. This will show the landing page of Firely Server.

Warning: When you have a firewall installed on your host machine, it can block traffic from your Firely Server
container to your host. Provide an inbound rule to allow traffic from the container to the host.

8.1.5 Run Docker with a MongoDB container

This section describes how to spin up a Firely Server container and a MongoDB container using a docker-compose.
We assume you already have MongoDB installed.

Warning: If you also run the Administration database on MongoDb, please read Retain the import history.

1 version: '3'
2

3 services:
4

5 vonk-web:
6 image: firely/server
7 environment:
8 - VONK_Repository=MongoDb
9 - VONK_MongoDbOptions:ConnectionString=mongodb://vonk-mongo-db/vonkdata

10 - VONK_MongoDbOptions:EntryCollection=vonkentries
11 - VONK_Administration:Repository=MongoDb
12 - VONK_Administration:MongoDbOptions:ConnectionString=mongodb://vonk-mongo-db/

→˓vonkadmin
13 - VONK_Administration:MongoDbOptions:EntryCollection=vonkentries
14 - VONK_License:LicenseFile=./license/firelyserver-license.json
15 volumes:
16 - .:/app/license
17 ports:
18 - "8080:4080"
19

20 vonk-mongo-db:
21 image: mongo

Save the text above to a file in your working directory with the name docker-compose.mongodb.yml. Make sure
your Firely Server license file is named firelyserver-license.json and is residing in your working directory (see
Getting started on how to obtain the license), not in a subdirectory named license (that is an internal directory inside
the container). If your license file has a different name, use that name instead of firelyserver-license in the text
above.

Use this command to spin up a Firely Server container and MongoDB container: > docker-compose -f
docker-compose.mongodb.yml up -d

126 Chapter 8. Firely Server deployment options

http://localhost:8080/

Firely Server

Open a browser and use the address http://localhost:8080/. This will show the landing page of Firely Server.

8.1.6 Providing license via an environment variable

The examples above demonstrate how to provide a license by mounting a license file from the host’s filesystem to
the filesystem within a container. Starting from Firely Server v4.7.0, the license can also be provided as a string via
an environment variable named VONK_License:LicenseString. This is meant to simplify deployments of Firely
Server within Docker as you don’t have to store the license file on the host’s filesystem anymore.

The value of that variable should contain the same text as the license file but all in one line.

The example below shows how to spin up a Docker container by supplying the license as a variable.

docker run -d \
-p 8080:4080 \
--name firely.server \
-e "VONK_License:LicenseString={ 'LicenseOptions': { 'Kind': 'Production', 'ValidUntil

→˓': '2022-10-30', 'Licensee': 'example@fire.ly', 'Plugins': [...] }, 'Signature': '...
→˓' }" \
firely/server

If you use docker-compose, you can specify the variable in you docker-compose file like this:

1 version: '3'
2

3 services:
4

5 vonk-web:
6 image: firely/server
7 ports:
8 - "8080:4080"
9 environment:

10 - "VONK_License:LicenseString={ 'LicenseOptions': { 'Kind': 'Production',
→˓'ValidUntil': '2022-10-30', 'Licensee': 'example@fire.ly', 'Plugins': [...] },
→˓'Signature': '...' }"

8.2 Using Firely Server on Kubernetes with a Helm chart

It is very common to run Firely Server on a Kubernetes cluster. This can be any Kubernetes implementation, it is not
bound to a specific cloud provider.

To ease the process we provide a helm chart to deploy Firely Server on the cluster. The chart can be found in the
FirelyTeam/Helm.Charts repository.

All the settings are described in the Read.me.

The same repository also contains a helm chart to deploy Identity Server, but that is very early still. Documentation
and settings will be added to that as well.

8.2. Using Firely Server on Kubernetes with a Helm chart 127

http://localhost:8080/
https://github.com/FirelyTeam/Helm.Charts
https://github.com/FirelyTeam/Helm.Charts/tree/main/firely-server

Firely Server

8.3 Firely Server deployment on Azure Web App Service

In this section we explain how you can deploy Firely Server in the Azure cloud.

8.3.1 Getting started

Before you can run Firely Server, you will need to download the Firely Server binaries and request a license:

1. Go to the Simplifier website, login and download the Firely Server binaries from https://simplifier.net/vonk/
download

2. Download the trial license file from the same location.

8.3.2 Deployment

1. Go to Azure (https://portal.azure.com) and create a web app:

128 Chapter 8. Firely Server deployment options

https://simplifier.net/vonk/download
https://simplifier.net/vonk/download
https://portal.azure.com

Firely Server

2. Choose a name for the webapp, we will use the placeholder <webapp>. Fill in an existing resource group or

8.3. Firely Server deployment on Azure Web App Service 129

Firely Server

create a new one and select Windows for the operation system (OS):

3. Add the trial license file (firelyserver-trial-license.json) to the firely-server-latest.zip by dragging the license file
into the zipfile.

4. Open a webbrowser, navigate to https://<webapp>.scm.azurewebsites.net/ZipDeployUI and drag
vonk_distribution.zip into the browser window. This will install the Firely Server as a Web App in Azure. In
our example the url is https://firelyserver.scm.azurewebsites.net/ZipDeployUI This method of
deployment does not work in Internet Explorer. It does work in Firefox, Chrome and Edge. Please make sure
that after you have uploaded the .zip file, all content is extracted into the top-level webroot directory.

5. Open a browser and go to the site https://<webapp>.azurewebsites.net/ . This will show the Firely
Server home page.

130 Chapter 8. Firely Server deployment options

Firely Server

8.3.3 Change database

In this example Firely Server is using a memory repository. If you want to change it to another kind of repository then
you could change that on the page Application Settings of the Web App. Here you can set Environment Variables with
the settings for either SQL Server or MongoDB. For example for MongoDB it will look like this:

8.3.4 More information

About Azure zip deployment: https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-zip#
deploy-zip-file

8.4 Yellow Button - Firely Server for your Simplifier project

Yellow Button is an easy way to run an instance of Firely Server that is aware of all the profiles, search parameters and
other (conformance) resources that are part of a Simplifier project. That can be a project of your own or for instance a
project with national profiles.

8.4.1 Prerequisites

Yellow Button provides you with a PowerShell script to start Firely Server in a Docker container. This means that you
will need:

• Windows OS that can run Docker for Windows

• Docker for Windows

If you still need to install Docker for Windows, please read docker_win for specific installation details.

8.4. Yellow Button - Firely Server for your Simplifier project 131

https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-zip#deploy-zip-file
https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-zip#deploy-zip-file

Firely Server

8.4.2 Getting the server

Go to Simplifier and open the project page of the project that has the profiles that are relevant to you. For our example
we took the US-Core project. Note that it has to be an STU3 project.

On the project page, click the Download button, and in the dropdown menu that appears, click ‘US-Core FHIR Server’
(the name here will reflect the name of the project). It is shown in the image below with the menu item marked in
yellow. The light blue marking shows you where to check whether this is a FHIR STU3 project.

When you click the menu item, Simplifier takes you to a page with instructions. It also includes a link to this docu-
mentation page, since we can host more detailed instructions here than on the Simplifier site.

132 Chapter 8. Firely Server deployment options

https://simplifier.net

Firely Server

Click the yellow / orange Download button and you will download a zip file named after the server you are installing.
Here it is us-core-VonkDockerServer.zip. Save it and unpack it in a folder on your harddrive. I unpacked it to
c:\data\yellowbutton\us-core-VonkDockerServer.

8.4.3 Running the server

Open Windows Powershell (or Windows Powershell ISE if you prefer). Windows Powershell by default does not allow
you to run scripts that you downloaded from the internet. To make sure you allow the server script to run, first tell
Powershell that that is all right:

> Set-ExecutionPolicy Unrestricted -Scope CurrentUser

You can be more restrictive by setting it to RemoteSigned. See Documentation on ExecutionPolicy for more informa-
tion.

Now go to the folder where you unpacked the zip, and run the script ./start-vonk-server.ps1:

> cd c:\data\yellowbutton\us-core-VonkDockerServer
> .\start-vonk-server.ps1

Powershell will probably still ask for confirmation before running the script. Type ‘R’ to allow it to run:

8.4. Yellow Button - Firely Server for your Simplifier project 133

http://go.microsoft.com/fwlink/?LinkID=135170

Firely Server

The script will pull images from the Docker hub as necessary, and then start the Firely Server. Firely Server will load
all the conformance resources from the core specification, and from your project into its Administration database. You
can read Conformance Resources if you want to know more about this. Since this may take some time, you will see a
progress bar. Firely Server is allowed to finish this task in at most 6 minutes.

As soon as Firely Server is ready, the script will finish and it will open your browser on the endpoint of Firely Server:
http://127.0.0.1:8080/, showing the landing page. For further use of the Firely Server RESTful API you will want to
use an API testing tool like Postman.

If the script does not finish in due time, please check the Common errors and mistakes below.

8.4.4 Common errors and mistakes

Error messages

1. Docker is not running

error during connect: Get http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.39/
→˓containers/json: open //./pipe/docker_engine: The system cannot find the file␣
→˓specified.
In the default daemon configuration on Windows, the docker client must be run␣
→˓elevated to connect. This error may also indicate that the docker daemon is␣
→˓not running.
Docker is not running, now exiting the script. See https://docs.docker.com/
→˓docker-for-windows/install/ for more information.

Solution: The problem is exactly as stated – your Docker for Windows is probably not running. Start it
from the Windows Start menu and try again.

2. Mount failed

ERROR: for vonk-web Cannot start service vonk-web: error while creating mount␣
→˓source path '/host_mnt/c/data/yellowbutton/us-core-VonkDockerServer/license':␣
→˓mkdir /host_mnt/c: file exists

134 Chapter 8. Firely Server deployment options

http://127.0.0.1:8080/

Firely Server

Solution: This may happen at subsequent starts of the Firely Server container. It appears to be an error
in Docker for Windows. But it may be fixed by resetting the credentials for Drive Sharing in Docker for
Windows (even if you did not change your password). See docker_win_shared_drives for more information.

3. Network failed

ERROR: for vonk-web Cannot start service vonk-web: driver failed programming␣
→˓external connectivity on endpoint ...

Solution: This is an issue reported as Issue 1967 on Docker for Windows. It can be solved by restarting
Docker on Windows.

Configuration checks

1. Is Docker for Windows configured to run Linux containers and not Windows containers? Check the Docker
switching Container type documentation on this if needed.

2. Did you enable Shared Drives on Docker for Windows? Yellow Button needs this to provide the license file to
the Docker container. See docker_win_shared_drives for more information.

3. Did you change your Windows password after sharing your drive in Docker for Windows? If so, you need to
reset your credentials in Docker for Windows. See docker_win_shared_drives for more information.

4. Does Docker for Windows have enough resources to let Firely Server run its initialization within the designated
time? You can give it more resources in the Docker Advanced Settings.

Still no luck? Please contact us on server@fire.ly. Please include:

• the output of the Powershell script ./start-vonk-server.ps1

• version info of Windows

• version info of Docker for Windows

• any other information you think is relevant.

8.4.5 Using the server

When your Firely Server is running, you can check whether your profiles are indeed present in the server by requesting
them from the Administration endpoint. In this example we search for the US-Core profiles:

GET http://127.0.0.1:8080/administration/StructureDefinition?url:below=http://hl7.org/
→˓fhir/us/core

Please note that any Conformance resources that influence the behaviour of Firely Server – such as the Validation –
must be managed on the Administration API and not the regular FHIR endpoint. See Firely Server Administration API
for more background.

If the project you created the server off of contains any example resources, they will be available at the normal FHIR
endpoint:

GET http://127.0.0.1:8080/<more specific search if you want>

8.4. Yellow Button - Firely Server for your Simplifier project 135

https://github.com/docker/for-win/issues/1967
https://docs.docker.com/docker-for-windows/#switch-between-windows-and-linux-containers
https://docs.docker.com/docker-for-windows/#switch-between-windows-and-linux-containers
https://docs.docker.com/docker-for-windows/#advanced
mailto:server@fire.ly

Firely Server

8.4.6 Your project in progress

You created the Firely Server off of a Simplifier project. That project may evolve. Either because it is your own and
you improve your profiles, or because the maintainer of the project applies changes. Firely Server is connected to the
Simplifier project. This means that you can update the conformance resource in Firely Server from the contents of the
project by:

• invoking importResources:

POST http://127.0.0.1:8080/administration/importResources

• or restarting Firely Server:

> ./stop-vonk-server.ps1
> ./start-vonk-server.ps1

8.4.7 Further steps

Yellow Button is an easy way to get started with Firely Server. But there are many other deployment options for the
server. Besides that you can add your own plugins with Firely Server Plugins, or build a Firely Server Facade with
Firely Server.

8.5 Deploy Firely Server on a reverse proxy

8.5.1 Why

For ASP.NET Core 1.0 Microsoft suggested to always use another web server in front of Kestrel for public websites.
For ASP.NET Core 2.0, while this is not a hard constraint anymore there are still a series of advantages in doing so:

• some scenarios like sharing the same IP and port by multiple applications are not yet supported in Kestrel

• helps in limiting the exposed surface area

• provides an additional layer of configuration and defense

• provides process management for the ASP.NET Core application (ensuring it restarts after it crashes)

• in some scenarios a certain web server already integrates very well

• helps simplifying load balancing and SSL setup

Hence using a reverse proxy together with the Kestrel server allows us to get benefits from both technologies at once.

8.5.2 With IIS

A common option on Windows is using IIS: for instructions on how to deploy Firely Server on IIS see Deploy Firely
Server on IIS.

For a comparison of IIS and Kestrel features at the moment of this writing you can check here.

136 Chapter 8. Firely Server deployment options

https://stackify.com/kestrel-web-server-asp-net-core-kestrel-vs-iis/?utm_source=DNK-224416

Firely Server

8.5.3 With Nginx

A popular open source alternative is Nginx. For instruction on how to deploy Firely Server on Nginx see Deploy Firely
Server on Nginx on Linux

Deploy Firely Server on IIS

Prerequisites

1. The following operating systems are supported: Windows 7 or Windows Server 2008 R2 and later

2. Have IIS windows feature turned on on the hosting machine. You can do this in Control Panel -> Programs
and Features -> Turn Windows features on or off . You need to check Internet Information Services -> Web
Management Tools -> IIS Management Console and Internet Information Services -> World Wide Web
Services to accept the default features or customize IIS to fit your needs.

3. In order to have IIS start the Firely Server right away, you will have to enable the “Application Initialization”
setting:

8.5. Deploy Firely Server on a reverse proxy 137

Firely Server

4. To enable PUT and DELETE interactions, you will have to turn off WebDAV:

138 Chapter 8. Firely Server deployment options

Firely Server

See https://stackoverflow.com/questions/6739124/iis-7-5-enable-put-and-delete-for-restful-service-extensionless
for some background information. If you do not want to disable WebDAV for all of IIS, you can also disable it
just for Firely Server using a setting in web.config, see Configuration.

5. Choose a solution to deploy/move the application to the hosting system. Multiple alternatives exist like Web
Deploy, Xcopy, Robocopy or Powershell. One popular choice is using Web Deploy in Visual Studio. For using
that you will need to install Web Deploy on the hosting system. To install Web Deploy, you can use the Web
Platform Installer (https://www.microsoft.com/web/downloads/platform.aspx).

6. Install the .NET Core Runtime & Hosting bundle on the hosting system. After installing it, you may need to
do a “net stop was /y” and “net start w3svc” to ensure all the changes are picked up for IIS. The bundle installs
the .NET Core Runtime, .NET Core Library, and the ASP.NET Core Module. ASP.NET Core Module (ANCM)
allows you to run ASP.NET Core applictions using Kestrel behind IIS. For more information about ANCM check
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/aspnet-core-module

8.5. Deploy Firely Server on a reverse proxy 139

https://stackoverflow.com/questions/6739124/iis-7-5-enable-put-and-delete-for-restful-service-extensionless
https://www.microsoft.com/web/downloads/platform.aspx
https://dotnet.microsoft.com/download/dotnet-core/3.1
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/aspnet-core-module

Firely Server

6. Prepare binaries. You can either download the binaries for Firely Server (see Getting Started), or create your
own solution by building a facade.

If you are deploying a Firely Server facade in your own web server application, take the additional following prerequi-
sites into consideration:

• Make sure you use the IISIntegration NuGet package. You can install this as part of one of the metapackages
(Microsoft.AspNetCore and Microsoft.AspNetCore.All) or independently Microsoft.AspNetCore.
Server.IISIntegration. This is needed for the interoperability between Kestrel and ANCM.

• Provide a web.config file for configuring the ANCM module or make sure the selected deploy options generates
one for you. Using dotnet publish or Visual studio publish would generate a web.config for you. Check https:
//docs.microsoft.com/en-us/aspnet/core/hosting/aspnet-core-module for guidance on configuring the ANCM.

Create Website in IIS

1. Publish the application to a location on the host server, using the solution selected in the Prerequisites step 3.

2. In IIS Manager create a new website or a new application under existing IIS site. Fill the Site name, the Binding
and link the Physical path to the folder created in the previous step, similar to the picture below. The bindings
defined in IIS override any bindings set in the application by calling either Listen or UseUrls.

140 Chapter 8. Firely Server deployment options

https://docs.microsoft.com/en-us/aspnet/core/hosting/aspnet-core-module
https://docs.microsoft.com/en-us/aspnet/core/hosting/aspnet-core-module

Firely Server

3. Edit the application pool to set the .NET CLR VERSION to NO Managed Code, similar to the picture below
(we use IIS as a reverse proxy, so it isn’t actually executing any .NET code). To edit the application pool, go
to the Application Pools panel, right-click the website’s app pool and select Advanced Settings. . . from the
popup menu.

8.5. Deploy Firely Server on a reverse proxy 141

Firely Server

Attention: IIS will pause a website if it is idle for a while. Pausing a dotnet process is the same as shutting it
down, so this means that IIS shuts down the Firely Server. This causes problems with each first request that is sent
to Firely Server after an idle period. Firely Server needs a couple of seconds to start up again, and answers with
a 423 Lock Error while it loads. Make sure to set Start Mode to AlwaysRunning to prevent IIS from shutting
down Firely Server.

4. Go to your IIS Sites, and click on your Firely Server website. On the right, choose Advanced settings. . . . Set
Preload Enabled to True to make IIS load the Firely Server right away, instead of on the very first request.
Otherwise this first request results in a 423 Lock Error as described above.

142 Chapter 8. Firely Server deployment options

Firely Server

Configuration

• You can use web.config to configure ASP.NET Core Module and IIS using the <system.webServer> section. Read
more about configuring ANCM at https://docs.microsoft.com/en-us/aspnet/core/hosting/aspnet-core-module.

• If you need to disable WebDAV for Firely Server, so you can perform PUT and DELETE interactions, add this
to the web.config file:

<modules>
<remove name="WebDAVModule" />

</modules>
<handlers>
<remove name="WebDAV" />

</handlers>

• You can configure the Firely Server using the appsettings.json file (see Configuring Firely Server).

• If you are building a Firely Server facade, you can use IISOptions to configure IISIntegration service options. You
can read more about IISOptions at https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.
iisoptions?view=aspnetcore-2.0.

services.Configure<IISOptions>(options =>
{

...
});

8.5. Deploy Firely Server on a reverse proxy 143

https://docs.microsoft.com/en-us/aspnet/core/hosting/aspnet-core-module
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iisoptions?view=aspnetcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.iisoptions?view=aspnetcore-2.0

Firely Server

SQL

In order to use the Sql Repository option in IIS you should make sure that the identity of the IIS application pool has
rights to use the database considering the provided connection string. To change the identity the application pool is
using open IIS Application Pools select your application pool right click and select “Advanced Settings. . . ” You
should see something similar to the image below:

Extra

If you’d like to set Firely Server environment variables via an Azure pipelines task, you can do so by setting the
application pool’s environment variables. For example, to pass the variable TEST to Firely Server that’s housed in the
fhir application pool, do the following:

%systemroot%\system32\inetsrv\APPCMD set config -section:system.applicationHost/
→˓applicationPools /-"[name='fhir'].environmentVariables.[name='VONK_TEST']" /
→˓commit:apphost
%systemroot%\system32\inetsrv\APPCMD set config -section:system.applicationHost/

(continues on next page)

144 Chapter 8. Firely Server deployment options

Firely Server

(continued from previous page)

→˓applicationPools /+"[name='fhir'].environmentVariables.[name='VONK_TEST',value='some_
→˓value_here']" /commit:apphost

See also Firely Server settings with Environment Variables.

Deploy Firely Server on Nginx on Linux

About Nginx

NGINX is a popular open source web server. It can act as a reverse proxy server for TCP, UDP, HTTP, HTTPS, SMTP,
POP3, and IMAP protocols, as well as a load balancer and a HTTP cache. You can find the documention for the Nginx
server at https://nginx.org/en/docs/.

Prerequisites

1. The following linux distribution are supported: Ubuntu, RHEL, Debian, Fedora, CentOS, SLES

2. Install .Net Core on the machine (see https://www.microsoft.com/net/learn/get-started/linuxubuntu)

3. Install Nginx sudo apt-get install nginx

Start Kestrel Firely Server

Download the binaries for Firely Server (see Getting Started), open a terminal console and start the Firely Server process
by using: dotnet Vonk.Server.dll. You should be able to reach to home page at http://localhost:4080 (or a different port
if you changed the default configurations)

Configure Nginx as a reverse proxy

To configure Nginx as a reverse proxy to forward requests to our ASP.NET Core application, modify /etc/nginx/sites-
available/default. Open it in a text editor, and replace the contents with the following:

server {
listen 80;
Match incoming requests with the following path and forward them to
the location of the Kestrel server.
See http://nginx.org/en/docs/http/ngx_http_core_module.html#location
location / {

#This should match the location where you deployed the Firely Server binaries␣
→˓with the Kestrel server.

#This can be on the same machine as the Nginx server or on a separate dedicated␣
→˓machine

proxy_pass http://localhost:4080;
The Kestrel web server we are forwarding requests to only speaks HTTP 1.1.
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
Adds the 'Connection: keep-alive' HTTP header.
proxy_set_header Connection keep-alive;
Forwards the Host HTTP header.

(continues on next page)

8.5. Deploy Firely Server on a reverse proxy 145

https://nginx.org/en/docs/
https://www.microsoft.com/net/learn/get-started/linuxubuntu
http://localhost:4080

Firely Server

(continued from previous page)

proxy_set_header Host $host;
proxy_cache_bypass $http_upgrade;

}
}

Now you can run the Firely Server.

Configuration

• To configure the Firely Server, you can use the appsettings.json file (see Configuring Firely Server).

• To configure Nginx you need to add extra options to the /etc/nginx/sites-available/default or to the nginx.conf
file.

• To monitor the application you can use systemd and create a service for starting, stopping and managing the
process.

8.5.4 Using X-Forwarded-Host header

The X-Forwarded-Host header is used for identifying the original host by the client, which is especially useful with
reverse proxies. As per the FHIR specification, Firely Server supports usage of this header. Keep in mind that usage of
the header exposes privacy sensitive information.

When using this header, make sure that the header value only contains the domain name like listed below:

Works:
• fire

• www.fire.ly

• www.fire

Does not work:
• fire/

• https://fire.ly

8.6 Set up an Identity Provider

8.6.1 About Identity Providers and Firely Server

In order to use Access control and SMART you need an Identity Provider that can provide OAuth2 JWT Tokens with
claims that conform to SMART on FHIR. In a production scenario, you typically already have such a provider. It could
be the EHR system, the Active Directory, or a provider set up specifically for let’s say a Patient Portal. It is also very
well possible that the provider handing the correct claims uses a federated OAuth2 provider to do the authentication.

146 Chapter 8. Firely Server deployment options

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-Host
http://hl7.org/fhir/http.html#custom
https://fire.ly
http://docs.smarthealthit.org/

Firely Server

8.6.2 An Identity Provider for testing

To allow you to test Access control and SMART , we provide you with instructions to build and run an Identity Provider
in which you can configure the necessary clients, claims and users yourself to test different scenarios. The instructions
are based on the excellent IdentityServer4 project on GitHub by Dominick Baier and Brock Allen.

By default, the configuration is such that you can test many different cases. If you wish to adjust the configuration, that
will require a bit of programming.

The Identity Provider is built in Microsoft .NET Core. Therefore it should also run cross-platform, just as Firely Server
itself. However, we did not try that.

Note: The project below is provided for your convenience. It comes with no warranty and is not supported by Firely.

In order to get tokens from the Identity Provider you need an http client. We included instructions on Access Control
Tokens with Postman.

8.6.3 Instructions

1. Clone the project Vonk.IdentityServer.Test from GitHub

2. Run the Powershell script .\scripts\GenerateSSLCertificate.ps1 This will generate an SSL Certificate in
.\Vonk.IdentityServer.Test\ssl_cert.pfx, with the password ‘cert-password’. This is preconfigured in Program.cs.

3. Open the solution Vonk.IdentityServer.Test.sln in Visual Studio

4. Build the solution

5. Run the Vonk.IdentityServer.Test project

6. Visual Studio should automatically open http://localhost:5100 in your browser.

You should see a page like this.

7. Also try https://localhost:5101 for the https connection. Your browser will ask you to make a security exception
for the self-signed certificate.

8. Get the openid connect configuration at http://localhost:5100/.well-known/openid-configuration. You can see
all the available scopes in this document.

8.6. Set up an Identity Provider 147

https://github.com/IdentityServer/IdentityServer4
https://github.com/FirelyTeam/Vonk.IdentityServer.Test
http://localhost:5100
https://localhost:5101
http://localhost:5100/.well-known/openid-configuration

Firely Server

8.6.4 Configuration

The Identity Server is preconfigured with two users and one client:

Client

ClientId
Postman

Secret
secret

Redirect Uri
https://www.getpostman.com/oauth2/callback

This client is allowed to request any of the available scopes.

It is called Postman, since many users use the Postman REST client to test FHIR Servers. If you use another client, you
can still use it as the ClientId, or alter the values in Config.cs.

Users

Alice

UserName
Alice

Password
password

Launch context
patient=alice-identifier

Bob

UserName
Bob

Password
password

Launch context
patient=bob-identifier

You can add or alter users in Config.cs.

148 Chapter 8. Firely Server deployment options

https://www.getpostman.com/oauth2/callback

Firely Server

8.7 Access Control Tokens with Postman

You can use Postman to get a JWT Token from the IdentityServer, and use that in a subsequent request to your local
Firely Server instance.

1. Make sure IdentityServer is running (see Set up an Identity Provider), I assume at http://localhost:5100

2. Open Postman Settings (menu: File | Settings) and turn ssl certificate validation off, otherwise your self-signed
certificate will not be accepted.

3. Open a request in Postman, let’s say GET /Patient

4. Verify that you get a 401 (smile)

5. Go to the Headers tab and make sure there is no Authorization header (if there is, it might have an outdated token,
and you don’t want that)

6. Go to the Authorization tab, that looks like this:

8.7. Access Control Tokens with Postman 149

http://localhost:5100

Firely Server

7. In the ‘Type’ dropdown choose OAuth2 (SMART uses OpenIdConnect, which is a specialization of OAuth2)

8. In the ‘Add authorization data to’ dropdown choose ‘Request headers’ (probably preselected)

9. Now fill in the blank fields under section ‘Configure New Token’.

10. Take special care to use https in the AUTH URL and Access Token URL fields.

11. You can alter the values in ‘Scope’ to get other claims in the token.

12. Click ‘Get New Access Token’ and you’ll be presented with the login screen of IdentityServer:

150 Chapter 8. Firely Server deployment options

Firely Server

13. Log in as Bob or Alice and you return to Postman with the newly retrieved token:

8.7. Access Control Tokens with Postman 151

Firely Server

14. Optionally, you can copy the value of the access token and paste it into JWT.io. It will show you the contents of
the token.

15. Back in Postman, click ‘Use Token’.

16. The token will be added as Authorization header to the request (make sure you have disabled ‘Hide auto-generated
headers’ in the Headers tab):

152 Chapter 8. Firely Server deployment options

http://jwt.io

Firely Server

17. Issue the original request again. Provided there is a Patient with the identifier of Bob or Alice (or whomever you
chose), it will be in the search results.

8.8 Performance of Firely Server

This section contains a general approach to Firely Server performance and SQL Server guidelines:

8.8.1 Performance of Firely Server

About Performance

What is the performance of Firely Server? That is a simple question, but unfortunately it has no answer. Or more
precisely, the answer depends on many variables. On this page we try to give you insight into those variables, introduce
you to testing performance yourself, and finally present the results of the tests that we run ourselves.

Performance variables

Firely Server Configuration

Firely Server can be run as self contained FHIR Server or as a Facade on top of an existing system. The performance
of a Facade is heavily dependent on the performance of the system it is built on top of. The self contained server
can run on different databases. On top of that you can configure a couple of features in the settings that influence the
performance. These are the most important configuration variables to take into account:

Repository

1. Memory: Memory is only meant for quick tests, and for use in unittests. Do not use it in any serious scenario,
much less for performance critical scenarios.

2. SQLite: SQLite is mainly used for the Administration database of Firely Server, but you can also use it for
the main database. Deployment is very easy because of the zero footprint of the driver, but be aware of its
limits. Firely Server must have very fast access to the database file, so effectively it has to be on a local disk.
Multithreading does work, but does not scale as well as other databases.

8.8. Performance of Firely Server 153

Firely Server

3. SQL Server: Performance tuning of SQL Server is a topic on its own. Firely Server manages the tables it needs,
and the indexes on top of it are optimized for the way Firely Server queries them. See SQL Server Guidelines for
more details about SQL Server database maintenance and tuning.

4. MongoDB: Performance tuning of MongoDB is, as well, a topic on its own. Firely Server manages the collections
it needs, and the indexes on top of it are optimized for the way Firely Server queries them. MongoDB is used in
our own performance tests, see below.

Prevalidation

By default, a resource that is sent to Firely Server is fully validated against its StructureDefinition. This requires extra
processing and thus extra time. But you can disable full validation if needed, with the ValidateIncomingResources
setting. We have no tests in place yet to time the difference caused by this setting.

Search Parameters

When a resource is sent to Firely Server for storage, Firely Server indexes the resource for all the search parameters
that are applicable to the resource. The more search parameters are known to Firely Server, the more resources will be
used for indexing - both time (for the indexing processing) and storage (for storing the values of each search parameter).
This also increases the size of the index tables and indexes, and therefore querying times. Thus, if you know you will
only use a portion of the predefined search parameters you can choose to delete the others from the Administration API
- see Conformance Resources and Restrict supported resources and SearchParameters.

Additionally, these search parameters can have an impact on the search performance:

1. _total: Searchbundles contain the element total which indicates the total number of resources that match the
query’s search parameters. Setting this parameter to _total = none results in faster searches as it saves the
query that would generate the result of the aforementioned element.

Pipeline

Firely Server is made up of a pipeline of plugins. You can leave out any plugin that you don’t need - so if you don’t need
conditional processing (create, update, delete), just exclude them from the pipeline. Excluded plugins are not loaded
and thus never executed - see Configuring the Firely Server Pipeline.

Platform

Firely Server can run on Windows, Linux and MacOS. Directly or in a Docker container. On real hardware, virtual
machine, app service or Kubernetes cluster. And then you can choose the dimensions of the platform, scaling up (bigger
‘hard’ware) or scaling out (more (virtual) machines) as you see fit. Each of these choices will influence performance.

Besides the way Firely Server is deployed, the way the database is deployed is an important factor. Firely Server needs
a very low latency connection between the Firely Server process(es) and the database server. If you have configured
Application Insights, the calls to the database are recorded as separate dependencies so you can check whether this may
be a bottleneck.

Firely Server is optimized for multithreaded processing. This means that it will fully benefit from extra processing
cores, either in the same machine (multi core processor) or by adding additional machines (and thus processors).

Firely Server is fully stateless, so no data about connections is saved between requests. First of all this helps in scaling
out, since you don’t need thread affinity. On top of that this reduces the memory requirements of Firely Server.

154 Chapter 8. Firely Server deployment options

Firely Server

Usage patterns

How will Firely Server be used in your environment?

1. Mostly for querying, or rather for creating and updating resources? Altering resources requires more processing
than reading them. Also see the comment on indexing and search parameters above.

2. How is the distribution of values in the resources that you query on? E.g. if you use only a few types of resources,
query them just by tag and the resources have only about 5 different tags, calculating the number of results will
take a lot of time. Using more finegrained distributed values to query on solves this.

3. With many individual resources or with (large) batches or transactions? Transactions take a lot longer to process
and require more memory, proportionally to the number of resources in them. If many transactions are run in
parallel, requests may queue up.

4. Many users with a low request rate each, or a few heavy users? Since Firely Server is stateless, this has little
influence. The total request rate is what counts.

Testing performance yourself

Because of all the variables mentioned above the best way to find out whether Firely Server’s performance is sufficient
for your use is: test it yourself.

We provide an evaluation license that you can use for any testing, including performance testing. See Getting Started.

Variables

Before you start testing, study the variables above and provide answers to them. Then you can configure your platform
and your tests in a way that comes closest to the expected real use.

Requests

You need a set of requests that you want to test. Based on your use case, identify the 5 (or more) most frequent requests.
For extra realism you should provide the parameters to the requests from a dataset (like a .csv file with search parameter
values).

What to measure?

There are essentially two questions that you can investigate:

1. Given this deployment, (mix of) requests and an expected request rate, what are the response times?

2. Given this deployment and (a mix of) requests, how many requests can Firely Server handle before it starts
returning time-outs?

Besides response times more insight can be gained by measuring the load on the server (processor / memory usage,
disk and network latency, for both the Firely Server and the database server) as well as the machine you are generating
the requests from (to ensure that is not bottlenecked).

Always make sure to use at least 2 separate machines for testing: one for Firely Server, and a separate one for generating
the requests. Testing Firely Server on the same machine as you’re generating requests from will make Firely Server
compete with the load testing tool for resources which’ll hamper the legitimacy of the test results.

Based on the answers you can retry with different parameters (e.g. add/remove hardware) to get a sense of the require-
ments for real use deployment.

8.8. Performance of Firely Server 155

Firely Server

Data

Performance testing is best done with data as realistic to your situation as possible. So if you happen to have historic
data that you can transform to FHIR resources, that is the best data to test with.

But if you don’t have data of your own, you can use synthesized data. We use data from the Synthea project for our
own tests. And we provide Firely Server Ingest (FSI) to upload the collection bundles from Synthea to Firely Server
(or any FHIR Server for that matter).

If you build a Facade, the historical data is probably already in a test environment of the system you build the Facade
on. That is a perfect start.

Test framework

To run performance tests you need a framework to send the requests in parallel and measure the response times. Test
automation is a profession in itself so we cannot go into much detail here. You can search for ‘REST Performance test
tools’ to get some options.

Available performance figures

We are in the process of setting up performance tests as part of our Continuous Integration and Deployment. Here we
describe how this test is currently set up. Because of the beta phase this is in, the output is not yet complete nor fully
reliable. Nevertheless we share the preliminary results to give you a first insight.

Firely Server performance test setup

1. Configuration

1. Repository: MongoDB, both for Administration and for the main database.

2. Prevalidation: off

3. Search parameters: support all types of resources and all search parameters from the FHIR specification.

4. Pipeline: load all available plugins except authorization.

2. Platform

1. Azure Kubernetes Service, 2 nodes.

2. Each node: Standard F2s (2 vcpus, 4 GB memory), running Linux

3. 1 MongoDB pod and 2 Firely Server pods, plus the Kubernetes manager

3. Usage pattern - we created a simple mix of requests

1. Upload the first 100 Synthea bundles from the precalculated set, each collection bundle transformed to a
Batch.

2. A ‘general’ test, consisting of:

1. Query Patient by name: GET {url}/Patient?name=...

2. Query Patient by name and maximum age: GET {url}/Patient?
name={name}&birthdate=ge{year}

3. Query all Conditions: GET {url}/Condition

156 Chapter 8. Firely Server deployment options

Firely Server

4. Query a Patient by identifier, with Observations: GET {url}/Patient?identifier={some
identifier}&_revinclude=Observation:subject

5. Query a Patient by identifier, with Observations and DiagnosticReports: GET {url}/Patient?
identifier={some identifier}&_revinclude=Observation:subject&_revinclude=DiagnosticReport:patient

3. Page through all the CarePlan resources: GET {url}/CarePlan?_count=10, and follow next links.

4. Page through 1/5 of the Patient resources and delete them: DELETE {url}/Patient/{id}

5. 20 concurrent users, randomly waiting up to 1 second before issuing the next request.

6. Test run of 5 minutes

4. Test framework

1. Locust for defining and running tests

2. Telegraf agents for collection metrics

3. InfluxDB for storing results

4. Grafana for displaying results

Test results

1. Upload: not properly timed yet.

2. General test: 75 percentile of response times around 200 ms. Note that the responses on queries with ‘_revin-
clude’ contain over 30 resources on average, sometimes over 100.

3. Page through all CarePlan resources: 75 percentile of response times around 110 ms.

4. Delete patients: This test always runs with 40 concurrent users, and 75 percentile of response times are around
350ms. Note that in Firely Server a delete is essentially an update, since all old versions are retained.

8.8.2 SQL Server Guidelines

Performance tuning of SQL Server is a topic on its own. Firely Server manages the tables it needs, and the indexes on
top of it are optimized for the way Firely Server queries them. In this section we offer general guidelines on how to
configure and maintain your SQL database. This topic only covers the most common options and should by no means
be regarded as exhaustive.

Memory Settings

The total amount of memory needed by SQL Server depends on your use case and (expected) workload. SQL Server
will claim memory from the OS when needed but will not give it back to the OS once claimed. If no limit is specified
you will run the risk of starving the host server and OS of enough free memory to operate efficiently. It is therefore
strongly advised to limit the maximum amount SQL Server is allowed to use.

To set a fixed amount of memory using SSMS1:

1. In Object Explorer, right-click a server and select Properties.

2. Click the Memory node.

3. Under Server Memory Options, enter the amount that you want for ‘Minimum server memory (in MB)’ and
‘Maximum server memory (in MB)’.

1 Server memory configuration options

8.8. Performance of Firely Server 157

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-memory-server-configuration-options?view=sql-server-ver15#procedure-for-configuring-a-fixed-amount-of-memory-not-recommended

Firely Server

Use the default settings to allow SQL Server to change its memory requirements dynamically based on available system
resources. It is recommended to set a max server memory as detailed above.

Windows Server with Desktop Experience requires a minimum memory size of 2 GB2, but 4 GB or more is recom-
mended (more is better). Example: If your server has 64GB of memory, set the amount of memory in SQL Server to
60,000MB (i.e. 64GB - 4GB = 60GB)

Disk Configuration

When optimizing SQL Server it is highly recommended to set the tempDB, the data disk and the log disk on seperate
drives (preferably SSDs)1.

TempDB

Place the tempDB database on a separate disk and adjust the number of secondary data files according to how many
(logical) processors the host features2. If the number of logical processors is less than or equal to eight, use the same
number of data files as logical processors. If the number of logical processors is greater than eight, use eight data files.
For TempDB it usually is sufficient to create 8 equally sized data files. As a general rule of thumb:

• Number of logical processors < 8
–> Set the number of data files equal to the number of logical processors

• Number of logical processors >= 8
–> Set the number of data files to 8

2 Memory requirements for Windows Server
1 Place Data and Log Files on Separate Drives
2 TempDB data files

158 Chapter 8. Firely Server deployment options

https://docs.microsoft.com/en-us/windows-server/get-started/hardware-requirements#ram
https://docs.microsoft.com/en-us/sql/relational-databases/policy-based-management/place-data-and-log-files-on-separate-drives?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-database?view=sql-server-ver15#physical-properties-of-tempdb-in-sql-server

Firely Server

Data & Log files

Placing both data AND log files on the same device can cause contention for that device, resulting in poor performance.
Placing the files on separate drives allows the I/O activity to occur at the same time for both the data and log files.

Also format your data disk to use 64-KB allocation unit size for all data files placed on a drive3. Use SSDs with high
IOPS where possible.

Backup Maintenance Plan

When Firely Server is used in conjunction with SQL Server, a maintenance plan should be in place. Furthermore, if
the recovery log is not set to ‘Simple’, regular back-ups of the transaction logs should be made.

Microsoft advises that if a database uses either the full or bulk-logged recovery model, you must back up the transaction
log regularly enough to protect your data, and to prevent the transaction log from filling. This truncates the log and
supports restoring the database to a specific point in time.

For more information on how to back up the Transaction Log consult the official Microsoft documentation, which can
be found here.

Index Maintenance

You can check the index fragmentation with the following script:

SELECT OBJECT_SCHEMA_NAME(i.object_id) AS schema_name,
OBJECT_NAME(i.object_id) AS object_name,
i.name AS index_name,
i.type_desc AS index_type,
100.0 * (ISNULL(SUM(rgs.deleted_rows), 0)) / NULLIF(SUM(rgs.total_rows), 0) AS avg_

→˓fragmentation_in_percent
FROM sys.indexes AS i
INNER JOIN sys.dm_db_column_store_row_group_physical_stats AS rgs
ON i.object_id = rgs.object_id
AND
i.index_id = rgs.index_id

WHERE rgs.state_desc = 'COMPRESSED'
GROUP BY i.object_id, i.index_id, i.name, i.type_desc
ORDER BY schema_name, object_name, index_name, index_type;

Some guidelines1:

• Do not assume that index maintenance will always noticeably improve your workload.
• If you observe that rebuilding indexes improves performance, try replacing it with updating statistics. This

may result in a similar improvement. In that case, you may not need to rebuild indexes as frequently, or at all,
and instead can perform periodic statistics updates.

• Monitor index fragmentation and page density over time to see if there is a correlation between these values
trending up or down, and query performance. If higher fragmentation or lower page density degrade performance
unacceptably, reorganize or rebuild indexes. It is often sufficient to only reorganize or rebuild specific indexes
used by queries with degraded performance. This avoids a higher resource cost of maintaining every index in
the database.

3 Best practice storage
1 Index maintenance

8.8. Performance of Firely Server 159

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/logs/troubleshoot-a-full-transaction-log-sql-server-error-9002?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/back-up-a-transaction-log-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices-storage
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes?view=sql-server-ver15#index-maintenance-strategy

Firely Server

• Establishing a correlation between fragmentation/page density and performance also lets you determine the fre-
quency of index maintenance. Do not assume that maintenance must be performed on a fixed schedule.
A better strategy is to monitor fragmentation and page density, and run index maintenance as needed before
performance degrades to an unacceptable level.

• If you have determined that index maintenance is needed and its resource cost is acceptable, perform maintenance
during low resource usage times, if any, keeping in mind that resource usage patterns may change over time.

There is also a general rule of thumb with regards to fragmentation (YMMV):

• < 10%: no action needed.

• 10-30%: reorganize the index

• >30%: rebuild the index

SQL Server Statistics

The maintenance of statistics falls outside the scope of Firely Server.

Normally SQL Server will update and maintain the statistics automatically. But when the database becomes large this
process might happen too infrequently. There is no magic bullet for updating statistics, so you are advised to experiment
and test what works best for your setup.

Consider updating statistics for the following conditions1:

• Query execution times are slow.

• Insert operations occur on ascending or descending key columns.

• After maintenance operations.

To manually update statistics there are two options23:

• A stored procedure sp_updatestats: this runs UPDATE STATISTICS against all user-defined and internal ta-
bles in the current database.

• A SQL statement against a single table (here we use the Entry table) UPDATE STATISTICS [vonk].[entry];

1 SQL Server Statistic docs
2 Store procedure sp_updatestats
3 Update statistics single table

160 Chapter 8. Firely Server deployment options

https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver15#UpdateStatistics
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-updatestats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/update-statistics-transact-sql?view=sql-server-ver15

CHAPTER

NINE

SECURITY

This section lists some general recommendations and steps to configure SMART on FHIR on Firely Server, to help
secure access to the data in your server.

9.1 Access control and SMART

Contents

• Concepts

• Identification and Authentication

• Authorization

• Access Control Engine

• Custom Authentication

• Other forms of Authorization

• Configuration

• Compartments

• Tokens

• Azure Active Directory

• Access Control Decisions

• Testing

9.1.1 Concepts

This explanation of access control and SMART in Firely Server requires basic understanding of the architecture of
Firely Server, so you know what is meant by middleware components and repository interfaces. It also presumes
general knowledge about authentication and OAuth2.

Access control generally consists of the following parts, which will be addressed one by one:

• Identification: Who are you? – usually a user name, login, or some identifier.

• Authentication: Prove your identification – usually with a password, a certificate or some other (combination of)
secret(s) owned by you.

161

Firely Server

• Authorization: What are you allowed to read or change based on your identification?

• Access Control Engine: Enforce the authorization in the context of a specific request.

9.1.2 Identification and Authentication

Firely Server does not authenticate users itself. It is meant to be used in an OAuth2 environment in which an OAuth2
provider is responsible for the identification and authentication of users. Typically, a user first enters a Web Application,
e.g. a patient portal, or a mobile app. That application interactively redirects the user to the OAuth2 provider - which
is the authorization server and may or may not handle authentication as well - to authenticate, and receives an OAuth2
token back. Then, the application can do an http request to Firely Server to send or receive resource(s), and provide the
OAuth2 token in the http Authentication header, thereby acting on behalf of the user. Firely Server can then read the
OAuth2 token and validate it with the OAuth2 authorization server. This functionality is not FHIR specific.

9.1.3 Authorization

Authorization in Firely Server by default is based on SMART on FHIR and more specifically the Scopes and Launch
Context defined by it. SMART specifies several claims that can be present in the OAuth2 token and their meaning.
These are examples of scopes and launch contexts that are recognized by Firely Server:

• scope=user/Observation.read: the user is allowed to read Observation resources

• scope=user/Encounter.write: the user is allowed to write Encounter resources

• scope=user/*.read: the user is allowed to read any type of resource

• scope=user/*.write: the user is allowed to write any type of resource

• scope=[array of individual scopes]

• patient=123: the user is allowed access to resources in the compartment of patient 123 – see Compartments.

Note: A conditional create, update or delete (see the FHIR http specification), requires read permissions on the
condition. Therefore, user/*.write will usually require additional read scopes.

SMART on FHIR also defines scopes starting with ‘patient/’ instead of ‘user/’. In Firely Server these are evaluated
equally. But with a scope of ‘patient/’ you are required to also have a ‘patient=. . . ’ launch context to know to which
patient the user connects. It is also possible to apply a launch context to a user scope, for example the scope can look
like “launch user/*.read”. In your authorization server you can specify the resources that are in the launch context
parameter.

The assignment of these claims to users, systems or groups is managed in the OAuth2 authorization server and not in
Firely Server. Firely Server does, however, need a way to access these scopes - so if your OAuth server is issuing a
self-encoded token, ensure that it has a scope field with all of the granted scopes inside it.

162 Chapter 9. Security

https://oauth.net/2/
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://en.wikipedia.org/wiki/List_of_OAuth_providers
http://docs.smarthealthit.org/
http://www.hl7.org/fhir/smart-app-launch/scopes-and-launch-context.html
http://www.hl7.org/fhir/smart-app-launch/scopes-and-launch-context.html
https://hl7.org/fhir/http.html

Firely Server

9.1.4 Access Control Engine

The Access Control Engine in Firely Server evaluates two types of authorization:

1. Type-Access: Is the user allowed to read or write resource(s) of a specific resourcetype?

2. Compartment: Is the data to be read or written within the current compartment (if any)?

As you may have noticed, Type-Access aligns with the concept of scopes, and Compartment aligns with the concept
of launch context in SMART on FHIR.

The Firely Server SmartContextMiddleware component extracts the claims defined by SMART on FHIR from the
OAuth2 token, and puts it into two classes that are then available for Access Control Decisions in all the interaction
handlers (e.g. for read, search, create etc.)

SMART on FHIR defines launch contexts for Patient, Encounter and Location, extendible with others if needed. If a
request is done with a Patient launch context, and the user is allowed to see other resource types as well, these other
resource types are restricted by the Patient CompartmentDefinition.

Note: To enable access to additional resources (outside the compartment), the client must request additional scopes.

9.1.5 Custom Authentication

You may build a plugin with custom middleware to provide authentication in a form that suits your needs. One exam-
ple could be that you want to integrate ASP.NET Core Identity into Firely Server. Then you don’t need the OAuth2
middleware, but instead can use the Identity framework to authenticate your users. See Custom authorization plugin
for more details.

9.1.6 Other forms of Authorization

In Access Control in Plugins and Facades you can find the interfaces relevant to authorization in Firely Server. If your
environment requires other authorization information than the standard SMART on FHIR claims, you can create your
own implementations of these interfaces. You do this by implementing a custom plugin. All the standard plugins of
Firely Server can then use that implementation to enforce access control.

9.1.7 Configuration

You will need to add the Smart plugin to the Firely Server pipeline. See Firely Server Plugins for more information. In
appsettings[.instance].json, locate the pipeline configuration in the PipelineOptions section, or copy that
section from appsettings.default.json (see also Changing the settings):

"PipelineOptions": {
"PluginDirectory": "./plugins",
"Branches": [

{
"Path": "/",
"Include": [

"Vonk.Core",
"Vonk.Fhir.R3",
...

9.1. Access control and SMART 163

http://www.hl7.org/implement/standards/fhir/compartmentdefinition-patient.html
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

Firely Server

Add Vonk.Smart to the list of included plugins. When you restart Firely Server, the Smart service will be added to
the pipeline.

You can control the way Access Control based on SMART on FHIR behaves with the SmartAuthorizationOptions in
the Firely Server settings:

"SmartAuthorizationOptions": {
"Enabled": true,
"Filters": [
{
"FilterType": "Patient", //Filter on a Patient compartment if a 'patient' launch␣

→˓scope is in the auth token
"FilterArgument": "identifier=#patient#" //... for the Patient that has an␣

→˓identifier matching the value of that 'patient' launch scope
}
//{
// "FilterType": "Encounter", //Filter on an Encounter compartment if an 'encounter

→˓' launch scope is in the auth token
// "FilterArgument": "identifier=#encounter#" //... for the Encounter that has an␣

→˓identifier matching the value of that 'encounter' launch scope
//},
//{
// "FilterType": "RelatedPerson", //Filter on a RelatedPerson compartment if a

→˓'relatedperson' launch scope is in the auth token
// "FilterArgument": "identifier=#relatedperson#" //... for the RelatedPerson that␣

→˓has an identifier matching the value of that 'relatedperson' launch scope
//},
//{
// "FilterType": "Practitioner", //Filter on a Practitioner compartment if a

→˓'practitioner' launch scope is in the auth token
// "FilterArgument": "identifier=#practitioner#" //... for the Practitioner that␣

→˓has an identifier matching the value of that 'practitioner' launch scope
//},
//{
// "FilterType": "Device", //Filter on a Device compartment if a 'device' launch␣

→˓scope is in the auth token
// "FilterArgument": "identifier=#device#" //... for the Device that has an␣

→˓identifier matching the value of that 'device' launch scope
//}

],
"Authority": "url-to-your-identity-provider",

//"AdditionalEndpoints": { //optional, only needed for certain identity provider setups
// "Issuers": ["additional-url-to-your-identity-provider"],
// "BaseEndpoints" : ["additional-url-to-your-identity-provider"]
//},
"Audience": "name-of-your-fhir-server" //Default this is empty

//"ClaimsNamespace": "http://smarthealthit.org",
"RequireHttpsToProvider": false, //You want this set to true (the default) in a␣

→˓production environment!
"Protected": {
"InstanceLevelInteractions": "read, vread, update, delete, history, conditional_

→˓delete, conditional_update, $validate",
"TypeLevelInteractions": "create, search, history, conditional_create",
"WholeSystemInteractions": "batch, transaction, history, search"

(continues on next page)

164 Chapter 9. Security

Firely Server

(continued from previous page)

},
"TokenIntrospection": {
"ClientId": "Firely Server",
"ClientSecret": "secret"

},
"ShowAuthorizationPII": false,

//"AccessTokenScopeReplace": "-",
"SmartCapabilities": [
"LaunchStandalone",
"LaunchEhr",
//"AuthorizePost",
"ClientPublic",
"ClientConfidentialSymmetric",
//"ClientConfidentialAsymmetric",
"SsoOpenidConnect",
"ContextStandalonePatient",
"ContextStandaloneEncounter",
"ContextEhrPatient",
"ContextEhrEncounter",
"PermissionPatient",
"PermissionUser",
"PermissionOffline",
"PermissionOnline",
"PermissionV1",
//"PermissionV2",
"ContextStyle",
"ContextBanner"

]
}

• Enabled: With this setting you can disable (‘false’) the authentication and authorization altogether. When it is
enabled (‘true’), Firely Server will also evaluate the other settings. The default value is ‘false’. This implies that
authorization is disabled as if no SmartAuthorizationOptions section is present in the settings.

• Filters: Defines how different launch contexts are translated to search arguments. See Compartments for more
background.

– FilterType: Both a launch context and a CompartmentDefinition are defined by a resourcetype. Use Filter-
Type to define for which launch context and related CompartmentDefinition this Filter is applicable.

– FilterArgument: Translates the value of the launch context to a search argument. You can use any supported
search parameter defined on FilterType. It should contain the name of the launch context enclosed in hashes
(e.g. #patient#), which is substituted by the value of the claim.

• Authority: The base url of your identity provider, such that {{base_url}}/.well-known/
openid-configuration returns a valid configuration response (OpenID Connect Discovery documentation).
At minimum, the jwks_uri, token_endpoint and authorization_endpoint keys are required in addition
to the keys required by the specification. See Set up an Identity Provider for more background.

• AdditionalEndpoints: Optional configuration setting. Add additional base authority endpoints that your identity
provider also uses for operations that are listed in the .well-known document. The additional issuer setting will
currently only extend the list of issuer urls that are valid within the issuer claim in the token passed to Firely
Server. The token validation will be adjusted accordingly. Please note that it does not influence which issuer urls
are allowed in the .well-known/openid-configuration document of the authorization server.

• Audience: Defines the name of this Firely Server instance as it is known to the Authorization server. Default is

9.1. Access control and SMART 165

https://openid.net/specs/openid-connect-discovery-1_0.html#rfc.section.4.2

Firely Server

‘firelyserver’.

• ClaimsNamespace: Some authorization providers will prefix all their claims with a namespace, e.g. http://my.
company.org/auth/user/*.read. Configure the namespace here to make Firely Server interpret it correctly.
It will then strip off that prefix and interpret it as just user/*.read. By default no namespace is configured.

• RequireHttpsToProvider: Token exchange with an Authorization server should always happen over https. How-
ever, in a local testing scenario you may need to use http. Then you can set this to ‘false’. The default value is
‘true’.

• Protected: This setting controls which of the interactions actually require authentication. In the example val-
ues provided here, $validate is not in the TypeLevelInteractions. This means that you can use POST [base-
url]/Patient/$validate without authorization. Since you only read Conformance resources with this interaction,
this might make sense.

• TokenIntrospection: This setting is configurable when you use reference tokens.

• ShowAuthorizationPII: This is a flag to indicate whether or not personally identifiable information is shown in
logs.

• AccessTokenScopeReplace: With this optional setting you tell Firely Server which character replaces the / (for-
ward slash) character in a SMART scope. This setting is needed in cases like working with Azure Active Direc-
tory (see details in section Azure Active Directory).

• SmartCapabilities: This setting can be used to configure SMART capabilities. All capabilities listed here are
supported by Firely Server, you can enable/disable specific capabilities based on your authorization server im-
plementation.

Note: After properly configuring Firely Server to work with an OAuth2 authorization server, enabling SMART and
configuring the SmartCapabilities for Firely Server, you are able to discover the SMART configuration metadata by
retrieving <base-url>/.well-known/smart-configuration.

Please check section Retrieve .well-known/smart-configuration in the SMART specification for more details on how to
request the metadata and how to interpret the response.

9.1.8 Compartments

In FHIR a CompartmentDefinition defines a set of resources ‘around’ a focus resource. For each type of resource that
is linked to the focus resource, it defines the reference search parameters that connect the two together. The type of
the focus-resource is in CompartmentDefinition.code, and the relations are in CompartmentDefinition.resource. The
values for param in it can be read as a reverse chain.

An example is the Patient CompartmentDefinition, where a Patient resource is the focus. One of the related resource-
types is Observation. Its params are subject and performer, so it is in the compartment of a specific Patient if that
Patient is either the subject or the performer of the Observation.

FHIR defines CompartmentDefinitions for Patient, Encounter, RelatedPerson, Practitioner and Device. Although Firely
Server is functionally not limited to these five, the specification does not allow you to define your own. Firely Server
will use a CompartmentDefinition if:

• the CompartmentDefinition is known to Firely Server, see Conformance Resources for options to provide them.

• the OAuth2 Token contains a claim with the same name as the CompartmentDefinition.code (but it must be
lowercase).

So some of the launch contexts mentioned in SMART on FHIR map to CompartmentDefinitions. For example, the
launch context ‘launch/patient’ and ‘launch/encounter’ map to the compartment ‘Patient’ and ‘Encounter’. Please note

166 Chapter 9. Security

https://docs.duendesoftware.com/identityserver/v5/apis/aspnetcore/reference/
http://hl7.org/fhir/smart-app-launch/conformance.html#smart-on-fhir-oauth-authorization-endpoints-and-capabilities
https://build.fhir.org/ig/HL7/smart-app-launch/app-launch.html#retrieve-well-knownsmart-configuration
http://www.hl7.org/implement/standards/fhir/compartmentdefinition.html
http://www.hl7.org/implement/standards/fhir/search.html#has
http://www.hl7.org/implement/standards/fhir/compartmentdefinition-patient.html

Firely Server

that launch contexts can be extended for any resource type, but not all resource types have a matching Compartment-
Definition, e.g. ‘Location’.

A CompartmentDefinition defines the relationships, but it becomes useful once you combine it with a way of specifying
the actual focus resource. In SMART on FHIR, the launch context can do that, e.g. patient=123. As per the SMART
Scopes and Launch Context, the value ‘123’ is the value of the Patient.id. Together with the Patient CompartmentDef-
inition this defines a – what we call – Compartment in Firely Server:

• Patient with id ‘123’

• And all resources that link to that patient according to the Patient CompartmentDefinition.

There may be cases where the logical id of the focus resource is not known to the authorization server. Let’s assume it
does know one of the Identifiers of a Patient. The Filters in the Configuration allow you to configure Firely Server to
use the identifier search parameter as a filter instead of _id. The value in the configuration example does exactly that:

"Filters": [
{
"FilterType": "Patient", //Filter on a Patient compartment if a 'patient' launch␣

→˓scope is in the auth token
"FilterArgument": "identifier=#patient#" //... for the Patient that has an␣

→˓identifier matching the value of that 'patient' launch scope
},
...

]

Please notice that it is possible that more than one Patient matches the filter. This is intended behaviour of Firely Server,
and it is up to you to configure a search parameter that is guaranteed to have unique values for each Patient if you need
that. You can always stick to the SMART on FHIR default of _id by specifying that as the filter:

"Filters": [
{
"FilterType": "Patient", //Filter on a Patient compartment if a 'patient' launch␣

→˓scope is in the auth token
"FilterArgument": "_id=#patient#" //... for the Patient that has an identifier␣

→˓matching the value of that 'patient' launch scope
},
...

]

But you can also take advantage of it and allow access only to the patients from a certain General Practitioner, of whom
you happen to know the Identifier:

"Filters": [
{
"FilterType": "Patient", //Filter on a Patient compartment if a 'patient' launch␣

→˓scope is in the auth token
"FilterArgument": "general-practitioner.identifier=#patient#" //... for the Patient␣

→˓that has an identifier matching the value of that 'patient' launch scope
},
...

]

In this example the claim is still called ‘patient’, although it contains an Identifier of a General Practitioner. This is
because the CompartmentDefinition is selected by matching its code to the name of the claim, regardless of the value
the claim contains.

9.1. Access control and SMART 167

http://www.hl7.org/fhir/smart-app-launch/scopes-and-launch-context.html

Firely Server

If multiple resources match the Compartment, that is no problem for Firely Server. You can simply configure the Filters
according to the business rules in your organization.

9.1.9 Tokens

When a client application wants to access data in Firely Server on behalf of its user, it requests a token from the
authorization server (configured as the Authority in the Configuration). The configuration of the authorization server
determines which claims are available for a certain user, and also for the client application. The client app configuration
determines which claims it needs. During the token request, the user is usually redirected to the authorization server,
which might or might not be the authentication server as well, logs in and is then asked whether the client app is allowed
to receive the requested claims. The client app cannot request any claims that are not available to that application. And it
will never get any claims that are not available to the user. This flow is also explained in the SMART App Authorization
Guide.

The result of this flow should be a JSON Web Token (JWT) containing zero or more of the claims defined in SMART
on FHIR. The claims can either be scopes or a launch context, as in the examples listed in Authorization. This token is
encoded as a string, and must be sent to Firely Server in the Authorization header of the request.

A valid access token for Firely Server at minimum will have:

• the iss claim with the base url of the OAuth server

• the aud the same value you’ve entered in SmartAuthorizationOptions.Audience

• the scope field with the scopes granted by this access token

• optionally, the compartment claim, if you’d like to limit this token to a certain compartment. Such a claim may
be requested by using a context scope or launching a part of an EHR launch. See Requesting context with scopes
for more details. For example, in case of Patient data access where the launch/patient scope is used, include
the patient claim with the patient’s id or identifier (Compartments) and make sure to request the patient/
<permissions> scope permissions. Compartment claims combined with user/<permissions> claims are
not taken into account.

Warning: Firely Server will not enforce any access control for resources outside of the specified compartment.
Some compartment definitions do not include crucial resource types like ‘Patient’ or their corresponding resource
type, i.e. all resources of this type regardless of any claims in the access token will be returned if requested. Please
use this feature with caution! Additional custom access control is highly recommended.

9.1.10 Azure Active Directory

Azure Active Directory (v2.0) does not allow to define a scope with / (forward slash) in it, which is not compatible
with the structure of a SMART on FHIR scope. Therefore when you use AAD to provide SMART on FHIR scopes to
Firely Server, you need to take the following steps

1. In a SMART scope, use another character (for instance -) instead of /. For example:

• user/*.read becomes user-*.read

• user/*.write becomes user-*.write

• patient/Observation.r becomes patient-Observation.r

If the used character (for instance -) is already in your SMART scope, then you can use \ (backward slash)
to escape it.

• patient/Observation.r?_id=Id-With-Dashes becomes patient-Observation.r?
_id=Id\-With\-Dashes

168 Chapter 9. Security

http://docs.smarthealthit.org/authorization/
http://docs.smarthealthit.org/authorization/
http://www.hl7.org/fhir/smart-app-launch/scopes-and-launch-context.html
http://www.hl7.org/fhir/smart-app-launch/scopes-and-launch-context.html

Firely Server

If a \ (backward slash) is already in your SMART scope, then you can escape it with another \.

• patient/Observation.r?_id=Id\With\BackwardSlash becomes patient-Observation.
r?_id=Id\\With\\BackwardSlash

2. Configure Firely Server which character is used in Step 1, then Firely Server will generate a proper SMART on
FHIR scope and handle the request further. This can be configured via setting AccessTokenScopeReplace.

For the first step above, instead of doing it manually, you can deploy SMART on FHIR AAD Proxy to Azure, which
helps you to replace / to - in a SMART scope when you request your access token. The other option would be to follow
Quickstart: Deploy Azure API for FHIR using Azure portal, check “SMART on FHIR proxy” box and use the proxy
by following Tutorial: Azure Active Directory SMART on FHIR proxy.

Warning: When you use the SMART on FHIR AAD Proxy, be careful with SMART on FHIR v2 scopes. - is an
allowed character within the access scope (see examples below). In those cases, the proxy simply replaces / with
- and does not escape the original -, then Firely Server cannot figure out which - is original, which will result in a
failed request.

• patient/Observation.rs?category=http://terminology.hl7.org/CodeSystem/
observation-category|laboratory

• Observation.rs?code:in=http://valueset.example.org/ValueSet/diabetes-codes

9.1.11 Access Control Decisions

In this paragraph we will explain how Access Control Decisions are made for the various FHIR interactions. For the
examples assume a Patient Compartment with identifier=123 as filter.

1. Search

a. Direct search on compartment type

Request
GET [base]/Patient?name=fred

Type-Access
User must have read access to Patient, otherwise a 401 is returned.

Compartment
If a Patient Compartment is active, the Filter from it will be added to the search, e.g. GET
[base]/Patient?name=fred&identifier=123

b. Search on type related to compartment

Request
GET [base]/Observation?code=x89

Type-Access
User must have read access to Observation, otherwise a 401 is returned.

Compartment
If a Patient Compartment is active, the links from Observation to Patient will be added to the
search. In pseudo code: GET [base]/Observation?code=x89& (subject:Patient.
identifier=123 OR performer:Patient.identifier=123)

c. Search on type not related to compartment

Request
GET [base]/Organization

9.1. Access control and SMART 169

http://www.hl7.org/fhir/smart-app-launch/scopes-and-launch-context.html
http://www.hl7.org/fhir/smart-app-launch/scopes-and-launch-context.html
https://github.com/azure-smart-health/smart-on-fhir-aad-proxy
https://docs.microsoft.com/en-us/azure/healthcare-apis/azure-api-for-fhir/fhir-paas-portal-quickstart
https://docs.microsoft.com/en-us/azure/healthcare-apis/azure-api-for-fhir/use-smart-on-fhir-proxy
http://hl7.org/fhir/smart-app-launch/STU2/scopes-and-launch-context.html

Firely Server

Type-Access
User must have read access to Organization, otherwise a 401 is returned.

Compartment
No compartment is applicable to Organization, so no further filters are applied.

d. Search with include outside the compartment

Request
GET [base]/Patient?_include=Patient:organization

Type-Access
User must have read access to Patient, otherwise a 401 is returned. If the user has read access
to Organization, the _include is evaluated. Otherwise it is ignored.

Compartment
Is applied as in case 1.a.

e. Search with chaining

Request
GET [base]/Patient?general-practitioner.identifier=123

Type-Access
User must have read access to Patient, otherwise a 401 is returned. If the user has read access
to Practitioner, the search argument is evaluated. Otherwise it is ignored as if the argument
was not supported. If the chain has more than one link, read access is evaluated for every link
in the chain.

Compartment
Is applied as in case 1.a.

f. Search with chaining into the compartment

Request
GET [base]/Patient?link:Patient.identifier=456

Type-Access
User must have read access to Patient, otherwise a 401 is returned.

Compartment
Is applied to both Patient and link. In pseudo code: GET [base]/Patient?
link:(Patient.identifier=456&Patient.identifier=123)&identifier=123
In this case there will probably be no results.

2. Read: Is evaluated as a Search, but implicitly you only specify the _type and _id search parameters.

3. VRead: If a user can Read the current version of the resource, he is allowed to get the requested version as well.

4. Create

a. Create on the compartment type

Request
POST [base]/Patient

Type-Access
User must have write access to Patient. Otherwise a 401 is returned.

Compartment
A Search is performed as if the new Patient were in the database, like in case 1.a. If it matches
the compartment filter, the create is allowed. Otherwise a 401 is returned.

b. Create on a type related to compartment

170 Chapter 9. Security

Firely Server

Request
POST [base]/Observation

Type-Access
User must have write access to Observation. Otherwise a 401 is returned. User must also
have read access to Patient, in order to evaluate the Compartment.

Compartment
A Search is performed as if the new Observation were in the database, like in case 1.b. If it
matches the compartment filter, the create is allowed. Otherwise a 401 is returned.

c. Create on a type not related to compartment

Request
POST [base]/Organization

Type-Access
User must have write access to Organization. Otherwise a 401 is returned.

Compartment
Is not evaluated.

5. Update

a. Update on the compartment type

Request
PUT [base]/Patient/123

Type-Access
User must have write access and read access to Patient, otherwise a 401 is returned.

Compartment
User should be allowed to Read Patient/123 and Create the Patient provided in the body. Then
Update is allowed.

b. Update on a type related to compartment

Request
PUT [base]/Observation/xyz

Type-Access
User must have write access to Observation, and read access to both Observation and Patient
(the latter to evaluate the compartment)

Compartment
User should be allowed to Read Observation/123 and Create the Observation provided in the
body. Then Update is allowed.

6. Delete: Allowed if the user can Read the current version of the resource, and has write access to the type of
resource.

7. History: Allowed on the resources that the user is allowed to Read the current versions of (although it is theoret-
ically possible that an older version would not match the compartment).

9.1. Access control and SMART 171

Firely Server

9.1.12 Testing

Testing the access control functionality is possible on a local instance of Firely Server. It is not available for the publicly
hosted test server.

You can test it using a dummy authorization server and Postman as a REST client. Please refer to these pages for
instructions:

• Set up an Identity Provider

• Access Control Tokens with Postman

You might also find it useful to enable more extensive authorization failure logging - Firely Server defaults to a secure
setup and does not show what exactly went wrong during authorization. To do so, set the ASPNETCORE_ENVIRONMENT
environment variable to Development.

172 Chapter 9. Security

http://server.fire.ly
http://server.fire.ly

CHAPTER

TEN

FEATURES

Firely Server offers many features as defined in the FHIR Specification and beyond.

10.1 FHIR RESTful API

Firely Server supports most of the features in the FHIR RESTful API.

10.1.1 FHIR Versions

All the operations below can be called for FHIR STU3 or FHIR R4. Firely Server supports the fhirVersion mimetype
parameter and fhir version endpoint mappings for that purpose. See Multiple versions of FHIR for more information.

10.1.2 Create, read, update, patch, delete

These five operations to manage the contents of the Firely Server, commonly referenced by the acronym CRUD, are
implemented as per the specification. Patch is implemented as FHIR Patch, as this is the most versatile one. This
includes version-read and the conditional variations. Only a few limitations apply.

Firely Server enables create-on-update: If you request an update and no resource exists for the given id, the provided
resource will be created under the provided id.

Firely Server can reject a resource based on Validating incoming resources.

Configuration

A conditional delete interaction may match multiple resources. You can configure the server to delete all matches,
or reject the operation (effectively only allowing single matches to be deleted). Allowing multiple deletes requires
support for transactions on the database (MongoDb, SQL Server or SQLite). If you allow for multiple deletes, you
have to specify a maximum number of resources that can be deleted at once, to save you from accidentally deleting too
many resources.

"FhirCapabilities": {
"ConditionalDeleteOptions": {

"ConditionalDeleteType": "Single", // Single or Multiple,
"ConditionalDeleteMaxItems": 1

}
}

173

http://www.hl7.org/implement/standards/fhir/http.html
http://hl7.org/fhir/fhirpatch.html

Firely Server

Limitations on CRUD

1. Simultaneous conditional creates and updates are not entirely transactional safe:

• Two conditional updates may both result in a create, although the result of one may be a match to the
other.

• Two conditional creates may both succeed, although the result of one may be a match to the other.

• A conditional create and a simultaneous conditional update may both result in a create, although the result
of one may be a match to the other.

2. Parameter _pretty is not yet supported.

3. XML Patch and JSON Patch are not supported.

10.1.3 Versioning

Firely Server keeps a full version history of every resource, including the resources on the Firely Server Administration
API .

10.1.4 Search

Search is supported as per the specification, with a few Limitations on search.

In the default configuration the SearchParameters from the FHIR specification are available. But Firely Server also
allows Custom Search Parameters.

Chaining and reverse chaining is fully supported.

Quantity search on UCUM quantities automatically converts units to a canonical form. This means you can have kg in
an Observation and search by lbs, or vice versa.

Compartment Search is supported.

Warning: Queries that request resource types not included in the current compartment’s CompartmentDefinition
will yield default search results. Example: Searching for Practitioner resources within a Patient’s compartment will
return all Practitioner resources, including the ones not linked to the patient.

Firely Server also supports _include:iterate and _revinclude:iterate, as well as its STU3 counterparts
_include:recurse and _revinclude:recurse. See the specification for the definition of those. You can con-
figure the maximum level of recursion:

"FhirCapabilities": {
"SearchOptions": {

"MaximumIncludeIterationDepth": 1
}

},

When searching with the :exact modifier the server handles grapheme clusters.

174 Chapter 10. Features

http://www.hl7.org/implement/standards/fhir/searchparameter-registry.html
http://www.hl7.org/implement/standards/fhir/search.html#2.21.1.2
http://hl7.org/fhir/R4/search.html#revinclude
http://hl7.org/fhir/R4B/search.html#modifiers

Firely Server

Sorting

_sort is implemented for searchparameters of types:

• string

• number

• uri

• reference

• datetime

• token

for the all supported repositories.

How is sort evaluated?

• A searchparameter may be indexed with multiple values for a single resource. E.g. Patient.name for Angelina
Jolie would have name=Angelina and name=Jolie. And George Clooney: name=George and name=Clooney. As
the FHIR Specification phrases it: “In this case, the sort is based on the item in the set of multiple parameters
that comes earliest in the specified sort order when ordering the returned resources.” Here is an example of how
Firely Server evaluates this.

– In ascending order: Patient?_sort=name

Name values Asc. per resource Asc. resources
Angelina Angelina Angelina Jolie
Jolie Jolie

George Clooney George Clooney
Clooney George

– Now in descending order: Patient?_sort=-name

Name values Desc. per resource Desc. resources
Angelina Jolie Angelina Jolie
Jolie Angelina

George George George Clooney
Clooney Clooney

• The searchparameter to sort on may not be indexed at all for some of the resources in the resultset. E.g. a Patient
without any identifier will not be indexed for Patient.identifier. Resources not having that parameter always end
up last (both in ascending and descending order). This is similar to the ‘nulls last’ option in some SQL languages.

• Token parameters are sorted only on their code element. The system element is ignored in the sorting.

• Firely Server uses the default collation as configured on the database server. This collation defines the ordering
of characters.

• Sorting on _score is not supported.

10.1. FHIR RESTful API 175

Firely Server

Limitations on search

The following parameters and options are not yet supported:

1. _text

2. _content

3. _query

4. _containedType

5. _filter

6. Location.near (geo matching is not supported)

7. :approx modifier on a quantity SearchParameter

8. :text modifier on a string SearchParameter

9. :above, :below, :in, :not-in, of-type modifiers on a token SearchParameter, above and below are also
not supported for Mime Types.

10. :above, :below modifiers on a reference SearchParameter (only valid on a strict hierarchy)

11. :below modifier on uri SearchParameters that act on canonical elements, see References and versions.

12. * wildcard on _include and _revinclude

13. _include and _revinclude will match the current version of the referenced resources, also if the reference is
versioned.

14. _pretty

15. Implicit ranges are supported on dates, datetimes and quantities with a UCUM unit. But not on other quantities
and number parameters.

16. Search parameter arguments in exponential form (e.g. 1.8e2).

17. Prefer: handling=strict/lenient: Firely server is always lenient on search parameter errors.

18. _total=estimate, only none and accurate are supported.

Furthermore:

1. Paging is supported, but it is not isolated from intermediate changes to resources.

10.1.5 History

History is supported as described in the specification, on the system, type and instance level. The _since and _count
parameters are also supported.

Configuration

"HistoryOptions": {
"MaxReturnedResults": 100

}

If a _history call would result in more than MaxReturnedResults, Firely Server asks the user to be more specific.
Use this to avoid overloading the server or the connection.

176 Chapter 10. Features

http://hl7.org/fhir/R4B/search.html#mimetype
http://hl7.org/fhir/R4B/search.html#recursive
http://hl7.org/fhir/R4B/search.html#versions

Firely Server

Limitations on history

1. _at parameter is not yet supported.

2. Paging is supported, but it is not isolated from intermediate changes to resources.

10.1.6 Batch

Batch is fully supported on the usual endpoint. You can limit the number of entries accepted in a single batch. See
Batch and transaction.

Note that batches are not supported in the /administration endpoint.

10.1.7 Transaction

Transactions are supported, but with the following limitation:

1. The /administration endpoint does not support transactions.

You can limit the number of entries accepted in a single transaction. See Batch and transaction.

10.1.8 Capabilities

On the Capabilities interaction (<firely-server-endpoint>/metadata) Firely Server returns a CapabilityState-
ment that is built dynamically from the supported ResourceTypes, SearchParameters and interactions. E.g. if you
Configure Search Parameters, the SearchParameters that are actually loaded appear in the CapabilityStatement.

10.1.9 Document endpoint

Firely Server supports submitting FHIR document bundles to the base endpoint of the server. The current version of
Firely Server will only extract the unstructured part of the document, i.e. the narrative of the document bundle. The
submission of the document will return a DocumentReference containing an attachment linking to a Binary resource
containing the original narrative. Please note that only the top-level narrative will be extracted. No section narrative
will be handled. Updates to narratives from documents with the same document identifier will result in an Update
interaction on the DocumentReference.

Please make sure that Vonk.Plugin.DocumentHandling.DocumentHandlingConfiguration is enabled in the
pipeline options to use this feature.

10.1.10 Not supported interactions

These interactions are not yet supported by Firely Server:

1. HEAD

Besides that, Firely Server does not yet return the date header as specified in HTTP return values

10.1. FHIR RESTful API 177

https://www.hl7.org/fhir/documents.html#3.3
http://hl7.org/fhir/R4/http.html#return

Firely Server

10.2 Bulk Data Export

Firely Server provides the option to export resources with the Bulk Data Export Service. The Bulk Data Export Service
enables the $export operation from the Fhir specification. Read more about the $export request flow

10.2.1 Appsettings

To start using the Bulk Data Export Service (BDE) you will first have to add the relevant plugins
(Vonk.Plugin.BulkDataExport.[Level]BulkDataExportConfiguration) to the PipelineOptions in the appsettings. In the
example below we have enabled all three levels: Patient, Group and System. Bulk Data Export is supported on all
databases used for the non-admin endpoint.

"PipelineOptions": {
"PluginDirectory": "./plugins",
"Branches": [
{
"Path": "/",
"Include": [
"Vonk.Core",
"Vonk.Fhir.R3",
"Vonk.Fhir.R4",
//"Vonk.Fhir.R5",
"Vonk.Repository.Sql.SqlVonkConfiguration",
"Vonk.Repository.Sqlite.SqliteVonkConfiguration",
"Vonk.Repository.MongoDb.MongoDbVonkConfiguration",
"Vonk.Repository.Memory.MemoryVonkConfiguration",
"Vonk.Subscriptions",
"Vonk.Smart",
"Vonk.UI.Demo",
"Vonk.Plugin.DocumentOperation.DocumentOperationConfiguration",
"Vonk.Plugin.ConvertOperation.ConvertOperationConfiguration",
"Vonk.Plugin.BinaryWrapper",
"Vonk.Plugin.Audit",
"Vonk.Plugins.TerminologyIntegration",
"Vonk.Plugin.BulkDataExport.SystemBulkDataExportConfiguration",
"Vonk.Plugin.BulkDataExport.GroupBulkDataExportConfiguration",
"Vonk.Plugin.BulkDataExport.PatientBulkDataExportConfiguration",

],
"Exclude": [
"Vonk.Subscriptions.Administration"

]
}, ...etc...

Bulk Data Export Service works as an asynchronous operation. To store the all operation-related information, it is
necessary to enable a “Task Repository” on the admin database. Please enable the relevant “Vonk.Repository.[database-
type].[database-type]TaskConfiguration” in the administration pipeline options, depending on the database type you
use for the admin database. All supported databases can be used as a task repository. In the example below we have
enabled the task repository for SQLite: “Vonk.Repository.Sqlite.SqliteTaskConfiguration”.

"PipelineOptions": {
"PluginDirectory": "./plugins",
"Branches": [

(continues on next page)

178 Chapter 10. Features

https://hl7.org/fhir/uv/bulkdata/export/index.html#request-flow

Firely Server

(continued from previous page)

{
"Path": "/administration",
"Include": [
"Vonk.Core",
"Vonk.Fhir.R3",
"Vonk.Fhir.R4",
//"Vonk.Fhir.R5",
//"Vonk.Repository.Sql.SqlTaskConfiguration",
//"Vonk.Repository.Sql.SqlAdministrationConfiguration",
"Vonk.Repository.Sql.Raw.KAdminSearchConfiguration",
"Vonk.Repository.Sqlite.SqliteTaskConfiguration",
"Vonk.Repository.Sqlite.SqliteAdministrationConfiguration",
//"Vonk.Repository.MongoDb.MongoDbTaskConfiguration",
"Vonk.Repository.MongoDb.MongoDbAdminConfiguration",
"Vonk.Repository.Memory.MemoryAdministrationConfiguration",
"Vonk.Subscriptions.Administration",
"Vonk.Plugins.Terminology",
"Vonk.Administration",
"Vonk.Plugin.BinaryWrapper"

],
"Exclude": [
"Vonk.Core.Operations"

], ...etc...

BDE introduces two new parts to the appsettings, namely TaskFileManagement and BulkDataExport.

"TaskFileManagement": {
"StoragePath": "./taskfiles"

},
"BulkDataExport": {

"RepeatPeriod" : 60000, //ms
"AdditionalResources": ["Organization", "Location", "Substance", "Device",

→˓"BodyStructure", "Medication", "Coverage"]
},

In StoragePath you can configure the folder where the exported files will be saved to. Make sure the server has write
access to this folder.

In RepeatPeriod you can configure the polling interval (in milliseconds) for checking the Task queue for a new export
task.

A patient-based or group-based Bulk Data Export returns resources based on the Patient compartment definition
(https://www.hl7.org/fhir/compartmentdefinition-patient.html). These resources may reference resources outside the
compartment as well, such as a Practitioner who is the performer of a Procedure. Using the AdditionalResources-
setting, you can determine which types of referenced resources are exported in addition to the compartment resources.

10.2. Bulk Data Export 179

https://www.hl7.org/fhir/compartmentdefinition-patient.html

Firely Server

10.2.2 $export

There are three different levels for which the $export operation can be called:

System

url: [firely-server-base]/$export

This will create a system level export task, exporting all resources in the Firely Server database to a .ndjson file per
resourcetype.

Patient

url: [firely-server-base]/Patient/$export

This will create a type level export task, exporting all resources included in the Patient Compartment in the Firely
Server database to an .ndjson file per resourcetype.

Group

url: [firely-server-base]/Group/<group-id>/$export

This will create an instance level export task. For each Patient in the Group, the task will export all resources included
in the Patient Compartment in the Firely Server database to an .ndjson file per resourcetype.

Note: For now we only support inclusion in a Group through Group.member.

Making an $export request will create a new task in the database with status “Queued”. The request should return an
absolute $exportstatus URL in the Content-Location header and the OperationOutcome in the body.

10.2.3 $exportstatus

The $export request should return the $exportstatus url for your export task. This url can be used to request the current
status of the task through a GET request, or to cancel the task through a DELETE request.

There are six possible status options:

1. Queued

2. Active

3. Complete

4. Failed

5. CancellationRequested

6. Cancelled

• If a task is Queued or Active, GET $exportstatus will return the status in the X-Progress header

• If a task is Complete, GET $exportstatus will return the results with a $exportfilerequest url per exported .ndjson
file. This url can be used to retrieve the files per resourcetype. If there were any problems with parts of the export,
an url for the generated OperationOutcome resources can be found in the error section of the result.

• If a task is Failed, GET $exportstatus will return HTTP Statuscode 500 with an OperationOutcome.

180 Chapter 10. Features

Firely Server

• If a task is on status CancellationRequested or Cancelled, GET $exportstatus will return HTTP Statuscode 410
(Gone).

10.2.4 $exportfilerequest

If a task has the Complete status, the GET $exportstatus request should return one or more $exportfilerequest urls.
Performing a GET request on this $exportfilerequest url returns a body of FHIR resources in newline delimited json
(ndjson).

Note: The Accept header for this request has to be:

application/fhir+ndjson

10.2.5 Facade

We support BDE for a facade. As always with a facade implementation, the parts dealing with the underlying proprietary
datastore need to be implemented by you. Below you find an overview of the relevant steps for implementing BDE for
a facade.

Export
level

Area Setting Action

All PipelineOptions for the ad-
ministration endpoint

“Vonk.Repository.[database-
type].[database-type]TaskConfiguration”

Enable for relevant adminis-
tration database type

All SupportedInterac-
tions.WholeSystemInteractions

$exportstatus Enable

All SupportedInterac-
tions.WholeSystemInteractions

$exportfilerequest Enable

All Facade plugin IBulkDataExportSnapshotRepository Implement
Patient PipelineOptions for the

(root) endpoint
“Vonk.Plugin.BulkDataExport.PatientBulkDataExportConfiguration”Enable

Patient SupportedInterac-
tions.TypeLevelInteractions

$export Enable

Patient Facade plugin IPatientBulkDataExportRepository Implement
Group PipelineOptions for the

(root) endpoint
“Vonk.Plugin.BulkDataExport.GroupBulkDataExportConfiguration”Enable

Group SupportedInterac-
tions.InstanceLevelInteractions

$export Enable

Group Facade plugin IGroupBulkDataExportRepository Implement
System PipelineOptions for the

(root) endpoint
“Vonk.Plugin.BulkDataExport.SystemBulkDataExportConfiguration”Enable

System SupportedInterac-
tions.SystemLevelInteractions

$export Enable

System Facade plugin ISystemBulkDataExportRepository Implement

Note: The interfaces below can be found in Vonk.Core version 4.7.0 and higher.

10.2. Bulk Data Export 181

Firely Server

ISystemBulkDataExportRepository

The class implementing this interface is responsible for creating (and eventually deleting) a snapshot of the relevant
data. This snapshot will be used at a later time for retrieving the data, mapping it to FHIR and writing the resources to
the output files. How you store this snapshot is up to you.

Attention: The current implementation of the Bulk Data Export plugin for facades does not trigger ISystem-
BulkDataExportRepository.DeleteSnapshot(string taskId). This will be resolved in the upcoming release of Firely
Server.

IPatientBulkDataExportRepository

Used when performing a Patient level export. It should retrieve the snapshot, use this to obtain the relevant data from
the proprietary datastore and transform this to FHIR resources. Only data directly associated with the relevant Patient
resources should be returned.

IGroupBulkDataExportRepository

Used when performing a Group level export. It should retrieve the snapshot, use this to obtain the relevant data from
the proprietary datastore and transform this to FHIR resources.

ISystemBulkDataExportRepository

Used when performing a System level export. It should retrieve the snapshot, use this to obtain the relevant data from
the proprietary datastore and transform this to FHIR resources.

10.3 Patient $everything

10.3.1 Description

This plugin implements the Patient $everything operation, as described in https://www.hl7.org/fhir/
operation-patient-everything.html. This operation returns all resources associated with a single patient.
The resources returned are determined by the Patient compartment, defined in https://www.hl7.org/fhir/
compartmentdefinition-patient.html. Currently, the functionality is only available if you use SQL server for
your data.

GET <base-url>/Patient/<patient-id>/$everything
Accept: <any supported FHIR media type>

Optional parameters:

• _since: Get only resources changed since this moment

• _type: Limit the returned resource types to only the types in this list

Please note that other defined operation parameters have not been implemented (yet).

So if you would want to fetch only Patient 1 and their Observations, changed since the 1st of January, 2021 in FHIR
JSON format, you would use:

182 Chapter 10. Features

https://www.hl7.org/fhir/operation-patient-everything.html
https://www.hl7.org/fhir/operation-patient-everything.html
https://www.hl7.org/fhir/compartmentdefinition-patient.html
https://www.hl7.org/fhir/compartmentdefinition-patient.html

Firely Server

GET <base-url>/Patient/1/$everything?_type=Patient,Observation&_since=2021-01-01
Accept: application/fhir+json

10.3.2 Configuration

Many resources in the Patient compartment reference resources outside the compartment. For example: An Observation
might have a performer which is a Practitioner. As Practitioner itself is not in the Patient compartment, the resource
would normally not be returned. But using a setting you can control which additional resource types are returned if
they are referenced by any of the resources you requested.

"PatientEverythingOperation": {
"AdditionalResources": ["Organization", "Location", "Substance", "Device",

→˓"Medication"]
}

This is the default value for the setting. As you can see, Practitioner is not included by default out of privacy consider-
ations but you can change that by overriding the setting.

Note: Device was added as an additional resource as it includes a reference to a patient but is not listed in the patient’s
compartment yet. As soon as the specification is updated, it will be removed from the appsetttings and returned by
default.

To include the plugin in your pipeline, add the following extra Include:

"PipelineOptions": {
"Branches": [

{
"Path": "/",
"Include": [

...
"Vonk.Plugin.PatientEverything"

]
},
...

]
}

10.3.3 License

The Patient $everything operation is licensed. To use it, you may need to renew your license.

10.4 $lastN Observations

10.4.1 Description

This plugin implements the Observation $lastn operation, as described in https://www.hl7.org/fhir/
observation-operation-lastn.html. This operation returns the most recent or last n=number of observations for a
patient within a given category (e.g. vital-signs, laboratory, etc.).

10.4. $lastN Observations 183

https://www.hl7.org/fhir/observation-operation-lastn.html
https://www.hl7.org/fhir/observation-operation-lastn.html

Firely Server

GET <base-url>/Observation/$lastn
Accept: <any supported FHIR media type>

Required parameters:

• patient / subject: a reference to the Patient;

• category: a category to get the most recent observations from.

Optional parameters:

• max: maximum number of Observations to return from each group;

• other search parameters defined for the Observation resource.

10.4.2 Appsettings

To start using the $lastn operation you will first have to add the plugin Vonk.Plugin.LastN to the PipelineOp-
tions in the appsettings. The plugin depends on Vonk.Repository.Sql.Raw.KSearchConfiguration and Vonk.
Repository.MongoDb.MongoDbVonkConfiguration, which, therefore, should also be included in the pipeline if
you use SQL Server or MongoDb respectively.

"PipelineOptions": {
"PluginDirectory": "./plugins",
"Branches": [
{
"Path": "/",
"Include": [
...
"Vonk.Repository.Sql.Raw.KSearchConfiguration", // If SQL Server is used
"Vonk.Repository.MongoDb.MongoDbVonkConfiguration", // If MongoDb is used
"Vonk.Plugin.LastN",

],
"Exclude": [
...

]
}, ...etc...

10.4.3 Examples

The examples below use a predefined set of resources. You can add those resources to your instance of the server to
reproduce the examples. To do it, please execute the following transaction bundle: download. The transaction bundle
contains a patient with id = examplePatient and a list of Observations for that patient.

184 Chapter 10. Features

Firely Server

Fetch the last 3 results for all vitals for a patient

Request:

GET <base-url>/Observation/$lastn?max=3&patient=examplePatient&category=vital-signs
Accept: application/fhir+json

Response:

{
"resourceType": "Bundle",
"type": "searchset",
"timestamp": "2021-09-14T11:52:58.450+04:00",
"meta": {
"lastUpdated": "2021-09-14T11:52:58.450+04:00",
"versionId": "8f3c6c0a-37d7-4fde-b80b-57e72e655fe7"

},
"entry": [
{
"fullUrl": "<base-url>/Observation/bac874a3-8d89-bd0c-9157-f2fb153d6642",
"search": {
"mode": "match"

},
"resource": {
"resourceType": "Observation",
"id": "bac874a3-8d89-bd0c-9157-f2fb153d6642",
"status": "final",
"category": [
{
"coding": [
{
"system": "http://terminology.hl7.org/CodeSystem/observation-category",
"code": "vital-signs",
"display": "vital-signs"

}
]

}
],
"code": {
"coding": [
{
"system": "http://loinc.org",
"code": "2708-6",
"display": "Oxygen saturation in Arterial blood"

},
{
"system": "http://loinc.org",
"code": "59408-5",
"display": "Oxygen saturation in Arterial blood by Pulse oximetry"

}
],
"text": "Oxygen saturation in Arterial blood"

},
"subject": {

(continues on next page)

10.4. $lastN Observations 185

Firely Server

(continued from previous page)

"reference": "<base-url>/Patient/examplePatient"
},
"effectiveDateTime": "2020-03-03T01:58:48+04:00",
// ...

}
},
{/* Entry Observation with code [Body Weight(29463-7)] from 2020-03-03 */},
{/* Entry Observation with code [Body Weight(29463-7)] from 2019-04-22 */},
{/* Entry Observation with code [Body Weight(29463-7)] from 2016-04-18 */},
{/* Entry Observation with code [Body Mass Index(39156-5)] from 2019-04-22 */},
{/* Entry Observation with code [Body Mass Index(39156-5)] from 2016-04-18 */},
{/* Entry Observation with code [Body Mass Index(39156-5)] from 2013-04-15 */},
{/* Entry Observation with code [Pain severity - 0-10 verbal numeric rating [Score] -

→˓ Reported(72514-3)] from 2019-04-22 */},
{/* Entry Observation with code [Pain severity - 0-10 verbal numeric rating [Score] -

→˓ Reported(72514-3)] from 2016-04-18 */},
{/* Entry Observation with code [Pain severity - 0-10 verbal numeric rating [Score] -

→˓ Reported(72514-3)] from 2013-04-15 */},
{/* Entry Observation with code [Body Height(8302-2)] from 2019-04-22 */},
{/* Entry Observation with code [Body Height(8302-2)] from 2016-04-18 */},
{/* Entry Observation with code [Body Height(8302-2)] from 2013-04-15 */},
{/* Entry Observation with code [Body temperature(8310-5)], [Oral temperature(8331-

→˓1)] from 2020-03-03 */},
{/* Entry Observation with code [Blood Pressure(85354-9)] from 2020-03-03 */},
{/* Entry Observation with code [Blood Pressure(85354-9)] from 2019-04-22 */},
{/* Entry Observation with code [Blood Pressure(85354-9)] from 2016-04-18 */},
{/* Entry Observation with code [Heart rate(8867-4)] from 2020-03-03 */},
{/* Entry Observation with code [Heart rate(8867-4)] from 2019-04-22 */},
{/* Entry Observation with code [Heart rate(8867-4)] from 2016-04-18 */},
{/* Entry Observation with code [Respiratory rate(9279-1)] from 2020-03-03 */},
{/* Entry Observation with code [Respiratory rate(9279-1)] from 2019-04-22 */},
{/* Entry Observation with code [Respiratory rate(9279-1)] from 2016-04-18 */}

],
"total": 23,
"link": [
{
"relation": "self",
"url": "<base-url>/Observation/$lastn?max=3&patient=examplePatient&category=vital-

→˓signs&_count=23&_skip=0"
}

],
"id": "6d6571c3-e6e0-461e-803f-c044c442191c"

}

186 Chapter 10. Features

Firely Server

Fetch the last laboratory results for a patient

Request

GET <base-url>/Observation/$lastn?patient=examplePatient&category=laboratory
Accept: application/fhir+json

Response

{
"resourceType": "Bundle",
"type": "searchset",
"timestamp": "2021-09-14T12:28:40.943+04:00",
"meta": {
"lastUpdated": "2021-09-14T12:28:40.943+04:00",
"versionId": "748c3f1e-1199-44b8-a3c7-f06f1b1b6b49"

},
"entry": [
{/* Entry Observation with code [Microalbumin Creatinine Ratio(14959-1)] from 2019-

→˓04-22 */},
{/* Entry Observation with code [Low Density Lipoprotein Cholesterol(18262-6)] from␣

→˓2019-04-22 */},
{/* Entry Observation with code [Carbon Dioxide(20565-8)] from 2019-04-22 */},
{/* Entry Observation with code [Chloride(2069-3)] from 2019-04-22 */},
{/* Entry Observation with code [High Density Lipoprotein Cholesterol(2085-9)] from␣

→˓2019-04-22 */},
{/* Entry Observation with code [Total Cholesterol(2093-3)] from 2019-04-22 */},
{/* Entry Observation with code [Erythrocyte distribution width [Entitic volume] by␣

→˓Automated count(21000-5)] from 2016-04-18 */},
{/* Entry Observation with code [Glucose(2339-0)] from 2019-04-22 */},
{/* Entry Observation with code [Triglycerides(2571-8)] from 2019-04-22 */},
{/* Entry Observation with code [Sodium(2947-0)] from 2019-04-22 */},
{/* Entry Observation with code [Platelet distribution width [Entitic volume] in␣

→˓Blood by Automated count(32207-3)] from 2016-04-18 */},
{/* Entry Observation with code [Platelet mean volume [Entitic volume] in Blood by␣

→˓Automated count(32623-1)] from 2016-04-18 */},
{/* Entry Observation with code [Estimated Glomerular Filtration Rate(33914-3)] from␣

→˓2019-04-22 */},
{/* Entry Observation with code [Creatinine(38483-4)] from 2019-04-22 */},
{/* Entry Observation with code [Hematocrit [Volume Fraction] of Blood by Automated␣

→˓count(4544-3)] from 2016-04-18 */},
{/* Entry Observation with code [Hemoglobin A1c/Hemoglobin.total in Blood(4548-4)]␣

→˓from 2019-04-22 */},
{/* Entry Observation with code [Calcium(49765-1)] from 2019-04-22 */},
{/* Entry Observation with code [Potassium(6298-4)] from 2019-04-22 */},
{/* Entry Observation with code [Urea Nitrogen(6299-2)] from 2019-04-22 */},
{/* Entry Observation with code [Leukocytes [#/volume] in Blood by Automated␣

→˓count(6690-2)] from 2016-04-18 */},
{/* Entry Observation with code [Hemoglobin [Mass/volume] in Blood(718-7)] from 2016-

→˓04-18 */},
{/* Entry Observation with code [Platelets [#/volume] in Blood by Automated␣

→˓count(777-3)] from 2016-04-18 */},
{/* Entry Observation with code [MCH [Entitic mass] by Automated count(785-6)] from␣

→˓2016-04-18 */},
(continues on next page)

10.4. $lastN Observations 187

Firely Server

(continued from previous page)

{/* Entry Observation with code [MCHC [Mass/volume] by Automated count(786-4)] from␣
→˓2016-04-18 */},

{/* Entry Observation with code [MCV [Entitic volume] by Automated count(787-2)]␣
→˓from 2016-04-18 */},

{/* Entry Observation with code [Erythrocytes [#/volume] in Blood by Automated␣
→˓count(789-8)] from 2016-04-18 */},

{/* Entry Observation with code [Rhinovirus RNA [Presence] in Respiratory specimen␣
→˓by NAA with probe detection(92130-4)] from 2020-03-03 */},

{/* Entry Observation with code [Respiratory syncytial virus RNA [Presence] in␣
→˓Respiratory specimen by NAA with probe detection(92131-2)] from 2020-03-03 */},

{/* Entry Observation with code [Human metapneumovirus RNA [Presence] in Respiratory␣
→˓specimen by NAA with probe detection(92134-6)] from 2020-03-03 */},

{/* Entry Observation with code [Parainfluenza virus 3 RNA [Presence] in Respiratory␣
→˓specimen by NAA with probe detection(92138-7)] from 2020-03-03 */},

{/* Entry Observation with code [Parainfluenza virus 2 RNA [Presence] in Respiratory␣
→˓specimen by NAA with probe detection(92139-5)] from 2020-03-03 */},

{/* Entry Observation with code [Parainfluenza virus 1 RNA [Presence] in Respiratory␣
→˓specimen by NAA with probe detection(92140-3)] from 2020-03-03 */},

{/* Entry Observation with code [Influenza virus B RNA [Presence] in Respiratory␣
→˓specimen by NAA with probe detection(92141-1)] from 2020-03-03 */},

{/* Entry Observation with code [Influenza virus A RNA [Presence] in Respiratory␣
→˓specimen by NAA with probe detection(92142-9)] from 2020-03-03 */},

{/* Entry Observation with code [Adenovirus A+B+C+D+E DNA [Presence] in Respiratory␣
→˓specimen by NAA with probe detection(94040-3)] from 2020-03-03 */},

{/* Entry Observation with code [SARS-CoV-2 RNA Pnl Resp NAA+probe(94531-1)] from␣
→˓2020-03-03 */}
],
"total": 36,
"link": [
{
"relation": "self",
"url": "<base-url>/Observation/$lastn?patient=examplePatient&category=laboratory&_

→˓count=36&_skip=0"
}

],
"id": "b6521ba6-6235-4221-95cd-e0f25edd77dc"

}

Get the most recent Observations in category vital-signs conducted before January 1, 2015

Request

GET <base-url>/Observation/$lastn?patient=examplePatient&category=vital-signs&
→˓date=lt2015-01-01
Accept: application/fhir+json

Response

{
"resourceType": "Bundle",
"type": "searchset",

(continues on next page)

188 Chapter 10. Features

Firely Server

(continued from previous page)

"timestamp": "2021-09-14T12:35:32.952+04:00",
"meta": {
"lastUpdated": "2021-09-14T12:35:32.952+04:00",
"versionId": "1b88af29-6f90-4a73-8d21-bf4594f45fec"

},
"entry": [
{/* Entry Observation with code [Body Weight(29463-7)] from 2013-04-15 */},
{/* Entry Observation with code [Body Mass Index(39156-5)] from 2013-04-15 */},
{/* Entry Observation with code [Pain severity - 0-10 verbal numeric rating [Score] -

→˓ Reported(72514-3)] from 2013-04-15 */},
{/* Entry Observation with code [Body Height(8302-2)] from 2013-04-15 */},
{/* Entry Observation with code [Blood Pressure(85354-9)] from 2013-04-15 */},
{/* Entry Observation with code [Heart rate(8867-4)] from 2013-04-15 */},
{/* Entry Observation with code [Respiratory rate(9279-1)] from 2013-04-15 */}

],
"total": 7,
"link": [
{
"relation": "self",
"url": "<base-url>/Observation/$lastn?patient=examplePatient&category=vital-signs&

→˓date=lt2015-01-01&_count=7&_skip=0"
}

],
"id": "b4178262-9bd3-4d9e-b4de-1578cb5d92de"

}

Fetch the last 3 body weight and body height measurements for a patient

Request

GET <base-url>/Observation/$lastn?max=3&patient=examplePatient&category=vital-signs&
→˓code=29463-7,8302-2
Accept: application/fhir+json

Response

{
"resourceType": "Bundle",
"type": "searchset",
"timestamp": "2021-09-14T12:55:06.929+04:00",
"meta": {
"lastUpdated": "2021-09-14T12:55:06.929+04:00",
"versionId": "3dd3bcde-cbfb-4003-98d7-d7c2f3194c8a"

},
"entry": [
{/* Entry Observation with code [Body Weight(29463-7)] from 2020-03-03 */},
{/* Entry Observation with code [Body Weight(29463-7)] from 2019-04-22 */},
{/* Entry Observation with code [Body Weight(29463-7)] from 2016-04-18 */},
{/* Entry Observation with code [Body Height(8302-2)] from 2019-04-22 */},
{/* Entry Observation with code [Body Height(8302-2)] from 2016-04-18 */},
{/* Entry Observation with code [Body Height(8302-2)] from 2013-04-15 */}

(continues on next page)

10.4. $lastN Observations 189

Firely Server

(continued from previous page)

],
"total": 6,
"link": [
{
"relation": "self",
"url": "<base-url>/Observation/$lastn?max=3&patient=examplePatient&category=vital-

→˓signs&code=29463-7,8302-2&_count=6&_skip=0"
}

],
"id": "49ee0b4b-00bd-40b7-8cb5-96a0e0892380"

}

10.4.4 License

The $lastn operation is part of the core Firely Server functionality. However, to use it, you may need to request an
updated license from Firely. You can use your current license file if it contains http://fire.ly/vonk/plugins/
lastn.

10.5 Custom Operations

10.5.1 Validation

Firely Server can validate a resource against a profile as defined in the $validate operation.

You can call validate on three levels:

1. Validate on the system level

2. Validate on the ResourceType level

3. Validate an instance from the database

Besides that you can configure Firely Server to validate every incoming resource and even filter on specific profiles.
See the section on Validating incoming resources. In all cases, the Precondition is that Firely Server must have access
to all relevant StructureDefinitions.

Validation has some Limitations.

Note: The very first validation call will take a considerable amount of time, typically around 5 seconds. This is because
Firely Server maintains a cache of validation information, and on the first call that cache is still empty. Subsequent
calls are much faster.

190 Chapter 10. Features

http://www.hl7.org/implement/standards/fhir/resource-operations.html#validate

Firely Server

Validate on the system level

POST <firely_server_endpoint>/$validate[?profile=<canonical-url-of-structuredefinition>]

There are two ways of calling $validate:

1. With a Resource or a Bundle of resources as body, and optionally, a profile parameter on the url.

2. With a Parameters resource as body, having

• a parameter element with the Resource to validate in the resource parameter;

• (optionally) the profile to validate against in the profile parameter

In both cases the request must have a Content-Type header matching the format of the body (application/fhir+json
or application/fhir+xml).

If you do not specify a profile parameter, Firely Server will validate the Resource against any profiles mentioned in
meta.profile as well as the base profile from the FHIR Specification.

If you call $validate on the system level, Firely Server will make no assumptions about the ResourceType of the Resource
to validate.

Validate on the ResourceType level

POST <firely_server_endpoint>/<resourcetype>/$validate[?profile=<canonical-url-of-
→˓structuredefinition>]

You can call $validate in the same two ways as with Validate on the system level.

If you call $validate on the ResourceType level, Firely Server will check whether the Resource to validate is of the same
<resourcetype> as provided in the url.

Validate an instance from the database

GET <firely_server_endpoint>/<resourcetype>/<id>/$validate[?profile=<canonical-url-of-
→˓structuredefinition>]

This time you can only use the (optional) profile parameter on the url to specify a StructureDefinition to validate against.

Precondition

Firely Server must be aware of all the StructureDefinitions referenced directly via parameter or indirectly by a profile
in meta.profile. Refer to the Conformance Resources for more information.

10.5. Custom Operations 191

Firely Server

Limitations

1. The mode parameter is not yet supported.

2. Implicit ValueSets (ones that use the .filter property) are not supported - create explicit ones instead (without the
.filter property).

10.5.2 Snapshot generation

Firely Server is capable of generating a snapshot for a StructureDefinition. This operation is not defined in the FHIR
Specification.

You can invoke this operation with

POST <firely-server-endpoint>/StructureDefinition/$snapshot

• The body must contain the StructureDefinition that you want filled with a fresh snapshot. The StructureDefinition
may contain an existing snapshot, it will be ignored.

• The Content-Type header must match the format of the body (application/fhir+json or application/fhir+xml)

Firely Server will return the same StructureDefinition, but with the snapshot element (re-)generated.

Note: The very first call to $snapshot will take a considerable amount of time, typically around 5 seconds. This is
because Firely Server maintains a cache of StructureDefinition information, and on the first call that cache is still empty.
Subsequent calls are much faster.

Precondition

Firely Server must be aware of all the other StructureDefinitions that are referred to by the StructureDefinition in the
body of the request. Refer to the Conformance Resources for more information.

10.5.3 $meta

Firely Server provides an implementation of the $meta operation as defined in the FHIR Specification.

By default the operation is only enabled on the level of a resource instance. It can also be enabled on the level of a
resourcetype or system wide, but the cost of execution will then be high. On sufficient customer demand an optimized
implementation is possible.

The FHIR Specification operations framework allows for the definition of custom operations and defines how to offer
them in the FHIR RESTful API. Firely Server offers two custom operations out of the box.

1. Validation

2. Snapshot generation

192 Chapter 10. Features

http://hl7.org/fhir/STU3/resource-operations.html#meta
http://www.hl7.org/implement/standards/fhir/operations.html
http://www.hl7.org/implement/standards/fhir/http.html

Firely Server

10.6 Custom Resources

Custom Resources are not formally defined in the FHIR Specification. To Firely Server a Custom Resource is a resource
with a definition that is a specialization of DomainResource, but that is not in the Core FHIR Specification. Firely Server
can handle these, provided it knows about the StructureDefinition that defines it. This page explains how to register
such a StructureDefinition and store custom resources.

Warning: Custom Resources are not interoperable. Do not use them for exchanging resources outside your own
programming control boundaries.

10.6.1 What to use them for?

Firely Server can be used as a platform to build apps on. In these apps, structures arise outside of the FHIR Specification
or even the Health domain. Still, it would be useful to also use Firely Server to store, search and version these structures.
Note that this is only for internal use in the app.

10.6.2 Register the definition

Just like any resourcetype, the definition for a custom resource is formalized as a StructureDefinition. Firely Server
will recognize it as the definition of a custom resourcetype if and only if:

• base = DomainResource

• derivation = specialization

• kind = resource

• abstract = false

This also means that a Logical Model as-is cannot be used as the definition of a custom resourcetype.

Examples of these can be found in the specification: each resourcetype is defined this way. The easiest way to get
started is with the definition of Basic (in xml or json), and adjust that:

1. Choose a name for the type, let’s say ‘Foo’.

2. Choose a url for the type. In STU3 this has to start with http://hl7.org/fhir/StructureDefinition/ (constraint sdf-7),
so http://hl7.org/fhir/StructureDefinition/Foo makes sense. Note that in R4 you are encouraged to use a url in a
domain that you control and not within hl7.org.

3. Make sure the id, name and type elements align with the name ‘Foo’.

4. Adjust the description

5. Make sure all the elements in the differential start with ‘Foo.’

6. (Recommended) Store your definition in Simplifier.net for version management, comments and collaboration.

If you have created the StructureDefinition, register it in Firely Server using any of the methods mentioned in Confor-
mance Resources. As an example we will issue an update interaction on the Administration API:

PUT <base-url>/administration/StructureDefinition/Foo
Content-Type=application/fhir+json; fhirVersion=3.0

By using an update we can choose the id and hence the location of this StructureDefinition. Firely Server does this by
default for all the resourcetypes defined by the specification as well.

10.6. Custom Resources 193

https://www.hl7.org/fhir/STU3/basic.profile.xml.html
https://www.hl7.org/fhir/STU3/basic.profile.json.html
http://hl7.org/fhir/StructureDefinition/
http://hl7.org/fhir/StructureDefinition/Foo

Firely Server

10.6.3 Use a resource

To test whether you can actually use the endpoint associated with your custom resourcetype, try a search on it: GET
<base-url>/Foo. This should return an empty bundle. If you get an OperationOutcome with the text “Request for
not-supported ResourceType(s) Foo”, the registration of the definition is not correct.

Note: The CapabilityStatement will not list the custom definition. This is because the element CapabilityState-
ment.rest.resource.type has a Required binding to the ResourceType valueset. And obviously this valueset does not
contain our ‘Foo’ resourcetype.

Now use your favorite editor to create a resource that conforms to the Foo StructureDefinition. And then create it on
Firely Server: POST <base-url>/Foo.

All the operations on specification-defined resourcetypes are also available for custom resources. You can also use them
in a batch or transaction bundle. Custom Resources can also be validated. This also means that Validating incoming
resources can be used in conjunction with Custom Resources.

10.6.4 Search parameters on a custom resource

In Firely Server you can define your own custom search parameters on any type of resource (see Custom Search Param-
eters). This includes Custom Resources. Just use the type name of the Custom Resource in the SearchParameter.base.

10.7 Terminology services

Firely Server provides support for Terminology operations and validation against terminologies. This is done through
a local implementation based on the Administration database (‘Local Terminology Service’) and - if configured -
extended with external FHIR Terminology Servers (‘Remote Terminology Services’). The configuration allows you to
set preferred services for each CodeSystem and ValueSet. Firely Server will then transparently select and query either
the Local or one of the Remote Terminology Services.

Of the operations listed below the following can be supported by the Local Terminology Service: $validate-code,
$expand, $lookup, $find-matches. Note that it only supports simple ValueSets and CodeSystems like the ones part of
the FHIR specification. It cannot support complex terminologies like LOINC or SNOMED-CT.

The terminology operations can be invoked for different FHIR versions as specified in Multiple versions of FHIR.

10.7.1 Terminology Integration

In earlier versions of Firely Server, local terminology services were separately configured from so-called Terminology
Integration. These are now merged.

194 Chapter 10. Features

Firely Server

Operations

ValueSet $validate-code

definition
http://www.hl7.org/implement/standards/fhir/valueset-operation-validate-code.html

notes
• Available on the type level <firely-server-endpoint>/administration/ValueSet/
$validate-code and the instance level <firely-server-endpoint>/administration/
ValueSet/<id>/$validate-code.

• Only the parameters url, valueSet, valueSetVersion, code, system, display, coding, codeableCon-
cept, abstract are supported.

• The url and valueSetVersion input parameters are only taken into consideration if no valueSet
resource was provided in the body. So the valueSet in the body takes priority.

• Both GET and POST interactions are available.

ValueSet $expand

definition
http://www.hl7.org/implement/standards/fhir/valueset-operation-expand.html

notes
• Available on the type level <firely-server-endpoint>/administration/ValueSet/
$expand and the instance level <firely-server-endpoint>/administration/
ValueSet/<id>/$expand.

• Only the parameters url, valueSet, valueSetVersion and includeDesignations are supported.

• The url and valueSetVersion input parameters are only taken into consideration if no valueSet
resource was provided in the body. So the valueSet in the body takes priority.

• Both GET and POST interactions are available.

CodeSystem $lookup

definition
http://www.hl7.org/implement/standards/fhir/codesystem-operation-lookup.html

notes
• Available on the type level <firely-server-endpoint>/administration/CodeSystem/
$lookup.

• Only the parameters code, system, version, coding and date are supported.

• Code & system combination takes priority over the coding parameter.

• Both GET and POST interactions are available.

10.7. Terminology services 195

http://www.hl7.org/implement/standards/fhir/valueset-operation-validate-code.html
http://www.hl7.org/implement/standards/fhir/valueset-operation-expand.html
http://www.hl7.org/implement/standards/fhir/codesystem-operation-lookup.html

Firely Server

CodeSystem $find-matches / $compose

definition
http://www.hl7.org/implement/standards/fhir/codesystem-operation-find-matches.html

notes
• Available on the type level <firely-server-endpoint>/administration/CodeSystem/
$find-matches and the instance level <firely-server-endpoint>/administration/
CodeSystem/<id>/$find-matches.

• Only the parameters system, exact, version, property.code and property.value are supported.

• The url and valueSetVersion input parameters are only taken into consideration if no valueSet
resource was provided in the body. So the valueSet in the body takes priority.

• Both GET and POST interactions are available.

• $find-matches was named $compose in FHIR STU3. The operation is supported with both
names.

CodeSystem $subsumes

definition
http://www.hl7.org/implement/standards/fhir/codesystem-operation-subsumes.html

notes
• Available on the type level <firely-server-endpoint>/administration/CodeSystem/
$subsumes.

• Only the parameters codeA, codeB, system, and version are supported.

• The system input parameters is only taken into when called on the type level.

• Both GET and POST interactions are available.

ConceptMap $closure

definition
http://www.hl7.org/implement/standards/fhir/conceptmap-operation-closure.html

notes
• Available on the system level <firely-server-endpoint>/administration/$closure.

• This operation is passed on to a Remote Terminology Service supporting it. It supports any
parameters that the Remote service supports.

• Only POST interactions are available.

196 Chapter 10. Features

http://www.hl7.org/implement/standards/fhir/codesystem-operation-find-matches.html
http://www.hl7.org/implement/standards/fhir/codesystem-operation-subsumes.html
http://www.hl7.org/implement/standards/fhir/conceptmap-operation-closure.html

Firely Server

ConceptMap $translate

definition
http://www.hl7.org/implement/standards/fhir/conceptmap-operation-translate.html

notes
• Available on the instance level <firely-server-endpoint>/administration/
ConceptMap/[id]/$translate and the type level <firely-server-endpoint>/
administration/ConceptMap/$translate.

• Only the parameters url, conceptMap (on POST), conceptMapVersion, code, system, version,
source, target, targetsystem and reverse are supported.

• Both GET and POST interactions are available.

Configuration

10.7.2 Pipeline

Make sure to add the Vonk.Plugins.Terminology plugin to the PipelineOptions in appsettings in order to make
use of the TerminologyIntegration plugin. Additionally, to the “/administration” pipeline, Vonk.Plugins.
Terminology can be used on the regular FHIR pipeline “/”. Please note that in this case, CodeSystems and ValueSets
are resolved from the Administration repository when executing a terminology operation and the correspoding resource
is not provided as part of the request as a parameter.

"PipelineOptions": {
"PluginDirectory": "./plugins",
"Branches": [
{
"Path": "/",
"Include": [..]

},
{
"Path": "/administration",
"Include": [
"Vonk.Core",
"Vonk.Fhir.R3",
"Vonk.Fhir.R4",
"Vonk.Administration",
...
"Vonk.Plugins.Terminology"

],
"Exclude": [
"Vonk.Subscriptions.Administration"

]
}, ...etc...

To include or exclude individual operations in the pipeline, see the available plugins under Terminology.

Also make sure that the terminology operations are allowed at all in the SupportedInteractions section:

"SupportedInteractions": {
"InstanceLevelInteractions": "$validate-code, $expand, $compose, $translate, $subsumes

→˓",
(continues on next page)

10.7. Terminology services 197

http://www.hl7.org/implement/standards/fhir/conceptmap-operation-translate.html

Firely Server

(continued from previous page)

"TypeLevelInteractions": "$validate-code, $expand, $lookup, $compose, $translate,
→˓$subsumes",

"WholeSystemInteractions": "$closure"
},

Lastly, operation on the administration endpoint can be limited to specific IP addresses:

"Administration": {
"Security": {

"AllowedNetworks": ["127.0.0.1", "::1"], // i.e.: ["127.0.0.1", "::1" (ipv6␣
→˓localhost), "10.1.50.0/24", "10.5.3.0/24", "31.161.91.98"]

"OperationsToBeSecured": ["$validate-code", "$expand", "$compose", "$translate", "
→˓$subsumes", "$lookup", "$closure"]

}
},

10.7.3 Options

You can enable the integration with one or more external terminology services by setting the required options in the
appsettings file. There is a block for the Local Terminology Service and one for each Remote Terminology Service.

For each terminology service you can set the following options:

Order
The order of the terminology service, or the priority. If multiple Terminology services
could be used for a request, Firely Server will use the priority to select a service. Termi-
nology services are arranged in a ascending order: so 1 will be selected over 2.

PreferredSystem
If a request is directed at a specific code system, Firely Server will choose this terminol-
ogy server over other available services. A system matches one of the preferred systems
if the system starts with the preferred system. So http://loinc.org will match any
CodeSystem or ValueSet with a canonical that starts with that url.

SupportedInteractions
The operations supported by the terminology service. Firely Server will only select this
service if the operation is in this list. Valid values:

"ValueSetValidateCode"
"CodeSystemValidateCode"
"Expand"
"FindMatches" / "Compose"
"Lookup"
"Translate"
"Subsumes"
"Closure"

SupportedInformationModels
The FHIR versions supported by the terminology service. Valid values:

"Fhir3.0"
"Fhir4.0"
"Fhir5.0"

198 Chapter 10. Features

Firely Server

Endpoint
The endpoint url where Firely Server can redirect the requests to.

Username
If the terminology service uses Basic Authentication, you can set the required username
here.

Password
If the terminology service uses Basic Authentication, you can set the required password
here.

MediaType
Default Media-Type that should be used for serialization of the Parameters resources for-
warded to the external terminology servie

Notes:

• The Endpoint, Username and Password settings are not valid for the Local Terminology Server, just for the
Remote services.

• If a Remote Terminology Service has different endpoints for different FHIR versions, configure each endpoint
separately.

• The SupportedInformationModels cannot be broader than the corresponding Fhir.Rx plugins configured
in the PipelineOptions.

A sample Terminology section in the appsettings can look like this:

"Terminology": {
"MaxExpansionSize": 650,
"LocalTerminologyService": {

"Order": 10,
"PreferredSystems": ["http://hl7.org/fhir"],
"SupportedInteractions": ["ValueSetValidateCode", "Expand"],
"SupportedInformationModels": ["Fhir3.0", "Fhir4.0", "Fhir5.0"]

},
"RemoteTerminologyServices": [
{

"Order": 20,
"PreferredSystems": ["http://snomed.info/sct"],
"SupportedInteractions": ["ValueSetValidateCode", "Expand", "Translate", "Subsumes

→˓", "Closure"],
"SupportedInformationModels": ["Fhir4.0"],
"Endpoint": "https://r4.ontoserver.csiro.au/fhir/",
"MediaType": "application/fhir+xml"

},
{

"Order": 30,
"PreferredSystems": ["http://loinc.org"],
"SupportedInteractions": ["ValueSetValidateCode", "Expand", "Translate"],
"SupportedInformationModels": ["Fhir3.0", "Fhir4.0"],
"Endpoint": "https://fhir.loinc.org/",
"Username": "",
"Password": ""

}
]

},

10.7. Terminology services 199

Firely Server

This means if you execute a terminology operation request, Firely Server will check whether the request is correct,
redirect it to the preferred terminology service and finally return the result.

Additionally to the remote and local terminology services, you can configure the maximum number of concepts that are
allowed to be included in a local ValueSet expansion (MaxExpansionSize). ValueSets stored in the local administration
database larger than the configured setting will not be expanded, hence they cannot be used for $validate-code, $validate
or $expand.

License

The Terminology plugin itself is licensed with the license token http://fire.ly/vonk/plugins/terminology.

When you configure Remote Terminology Services it is your responsibility to check whether you are licensed to use
those services.

10.8 Custom Search Parameters

10.8.1 Configure Search Parameters

You can control which search parameters are known to Firely Server. This is managed in the same way as all the
conformance resources, see Conformance Resources.

10.8.2 Re-indexing for new or changed SearchParameters

Firely Server extracts values from resources based on the available search parameters upon create or update. This
means that if you already had resources in your database before adding a custom search parameter, those resources will
not be indexed for that parameter. If you on the other hand removed a previously used search parameter, the index will
contain superfluous data.

To fix that, you should re-index (repeat the extraction) for these parameters.

In short, both reindex operations below will:

• Return an Operation Outcome stating that the reindex procedure was started successfully.

• Run the actual reindex asynchronously, using a configured number of threads, thereby using most of the hardware
resources available to Firely Server.

• Block any other requests for the duration of the reindex.

• Log progress in the log.

Caution: This is a possibly lengthy operation, so use it with care.

• Always try the reindex on a representative (sub)set of your data in a test environment to assess how long the
operation may take in the production environment.

• Always make a backup of your data before performing a reindex.

Warning: During the re-index operation, all other operations are blocked and responded to with response code
‘423 - Locked’.

200 Chapter 10. Features

Firely Server

Reindexing and FHIR versions

Reindexing is also controlled by the fhirVersion parameter (see Multiple versions of FHIR) in the Accept header or the
version-mapped endpoint. It will then reindex only for SearchParameters and resources in that FHIR version. So for a
full reindex of everything you may need to issue the command twice, once for each fhirVersion.

Rebuild the whole search index

This is only needed if we changed something very significant to the way Firely Server searches, like

• The way values are extracted for all or many searchparameters.

• The structure in which Firely Server stores the search index.

To re-index all resources for all search parameters, use:

POST http(s)://<firely-server-endpoint>/administration/reindex/all
Accept=application/fhir+json (or xml); fhirVersion=3.0 (or 4.0)

This will delete any previously indexed data and extract it again from the resources.

Rebuild the search index for specific searchparameters

This is needed if:

• The definition (usually the expression) of a searchparameter has changed.

• A searchparameter was added.

• A searchparameter was removed and you want the search index to be tidy and not have this parameter in it
anymore.

To re-index all resources for certain search parameters, use:

POST http(s)://<firely-server-endpoint>administration/reindex/searchparameters
Accept=application/fhir+json (or xml); fhirVersion=3.0 (or 4.0)

In the body of the POST, you put the name of the search parameters to actually re-index as form parameters:

include=Patient.name,Observation.code
exclude=Organization.name

includemeans that resources will be re-indexed only for those search parameters. You use this if you added or changed
one or few search parameters.

exclude means that any existing index data for those search parameters will be erased. You use this when you removed
a search parameter.

Remember to adjust the Content-Type header: application/x-www-form-urlencoded.

If you are not permitted to perform the reindex, Firely Server will return statuscode 403.

10.8. Custom Search Parameters 201

Firely Server

Re-index Configuration

Firely Server will not re-index the resources in the database all at once, but in batches. The re-index operation will
process all batches until all resources are re-indexed. You can control the size of the batches in the Firely Server settings.
Besides that you can also control how many threads run in parallel to speed up the reindex process. The configured
value is a maximum, since Firely Server will also be limited by the available computing resources.

"ReindexOptions": {
"BatchSize": 100,
"MaxDegreeOfParallelism": 10

},

Use any integer value >= 1.

10.8.3 Limitations

Every search parameter has to have either:

• a valid FhirPath in it’s Expression property, or

• be a Composite search parameter and specify at least one component.

10.9 Errata to the specification

The FHIR Specification is good, but not perfect. Some of the SearchParameters have errors. If we find these errors,
we report them in the issue tracking system of HL7. But it takes time until the fix is applied to the specification. In
the meantime Firely Server provides you with updated versions of the resources that have errors, so you can use them
already while we await the fixes in the specification.

These corrections come with the Firely Server installation, in the files:

• errataFhir3.0.zip, with corrections to the STU3 version of the Specification

• errataFhir4.0.zip, with corrections to the R4 version of the Specification

These files are imported automatically during startup, as are other conformance resources, see Conformance Resources.

Currently the errata.zip file contains the following corrections:

clinical-patient
This parameter incorrectly specified that both Patient and Group were target resource types for the patient search
parameter. For DeviceUseStatement-patient this was correct, so we created a separate file for this parameter, still
listing the Group as a valid target type.

search parameters with FhirPath expression .as(DateTime)
Several search parameters had an incorrect FhirPath expression using .as(DateTime) instead of .as(dateTime).
As a result, Firely Server could not index the fields correctly and searches on the dates would not work. The
search parameters that were corrected are: clinical-date, DeviceRequest-event-date, Observation-code-value-
date, Observation-value-date and patient-death-date.

Resource.<xyz> expressions
The FhirPath library did not support polymorphism yet, so all the search parameters defined with an expression
of Resource.<xyz> – for example Resource.meta.lastUpdated – did not work correctly. We have changed the
expression to have just the <xyz> part – for example meta.lastUpdated.

202 Chapter 10. Features

Firely Server

StructureDefinition.ext-context (R4 only)
The FhirPath expression ended on a BackboneElement that cannot be indexed. Changed to the expression
StructureDefinition.context.where(type='element').expression.

10.10 Subscriptions

Subscriptions can be managed in the Firely Server Administration API , on the /administration/Subscription
endpoint. If you post a Subscription to the regular FHIR endpoint, it will be stored but not evaluated. Subscriptions
posted to the /administration endpoint will be processed and evaluated for each POST/PUT to the server.

Firely Server currently only supports STU3/R4-style Subscriptions.

If you are not permitted to access the /Subscription endpoint, Firely Server will return statuscode 403.

See Subscriptions in the specification for more background on Subscriptions.

10.10.1 FHIR versions

You POST a Subscription with a fhirVersion parameter (see Multiple versions of FHIR) or to a version specific endpoint.
It will then respond to changes on resources in that FHIR version. So if you need a Subscription on both STU3 and R4
resources, POST that Subscription for both FHIR versions.

10.10.2 Channels

According to the FHIR specification, a channel defines how a FHIR server notifies other systems when resources get
created or updated. The specification describes several channel types. Currently, Firely Server supports only rest-hook
channel type.

Below is an example of a Subscption resource that uses this channel type.

{
"resourceType": "Subscription",
"id": "example",
"status": "requested",
"contact": [
{
"system": "phone",
"value": "ext 4123"

}
],
"end": "2025-01-01T00:00:00Z",
"reason": "Monitor new neonatal function",
"criteria": "Observation?code=http://loinc.org|1975-2",
"channel": {
"type": "rest-hook",
"endpoint": "https://my-subscription-endpoint.com",
"payload": "application/fhir+json",
"header": [
"Authorization: Bearer secret-token-abc-123"

]
}

}

10.10. Subscriptions 203

http://www.hl7.org/fhir/stu3/subscription.html

Firely Server

Once this Subscription resource is posted to Firely Server, the server will be sending notifications to the specified
endpoint whenever a resource matching the search criteria gets created or updated. It is possible to provide headers
that will be copied over to the notification requests. It may come in handy if the notifications endpoint is secured and the
Authorization header must be used. The payload option defines the format of the notification payload. The following
values can be used:

• application/fhir+json and application/json

• application/fhir+xml and application/xml

The payload will contain the created/updated resource in the FHIR format. If the payload option is omitted, the notifi-
cations will be sent without the body.

10.10.3 Configuration

Firely Server evaluates the active Subscriptions periodically, and in batches (x at a time, until all the active Subscriptions
have been evaluated). You can control the period and the batchsize. If an evaluation of a Subscription fails, Firely Server
will retry the evaluation periodically for a maximum amount of tries. You can control the retry period and the maximum
number of retries.

"SubscriptionEvaluatorOptions": {
"Enabled" : true
"RepeatPeriod": 20000,
"SubscriptionBatchSize" : 1,
"RetryPeriod": 60000,
"MaximumRetries": 3,
"SendRestHookAsCreate": false

},

• Enabled allows you to quickly enable or disable the evaluation of Subscriptions. Default value is ‘false’, which
implies that Subscription evaluation is also off if this section is left out of the settings.

• RepeatPeriod is expressed in milliseconds. In the example above the period is set to 20 seconds, meaning that
after a change a subscriber will be notified in at most 20 seconds.

• SubscriptionBatchSize is expressed in number of Subscriptions that is retrieved and evaluated at once. De-
fault is 1, but you can set it higher if you have a lot of Subscriptions.

• RetryPeriod is expressed in milliseconds. In the example above the period is set to 60 seconds, meaning that
Firely Server will retry to send the resources after a minimum of 60 seconds. Retry is included in the normal
evaluation process, so the RetryPeriod cannot be smaller than RepeatPeriod.

• MaximumRetries is the maximum amount of times Firely Server will retry to send the resources.

• SendRestHookAsCreate: in versions < 3.9.3, Vonk sent RestHook notifications as a create operation using a
POST. That was not compliant with the specification that requires an update operation using a PUT. The default
value of false provides compliant behaviour. Only set it to true if you need Firely Servder to keep sending
create operations as it did previously.

204 Chapter 10. Features

Firely Server

10.11 Auditing

Firely Server can log access through the RESTful API for auditing purposes. It has 3 features:

1. Write requests and responses to a separate audit logfile.

2. Include user id and name from the JWT token (if present) in the audit log lines.

3. Write the audit information to AuditEvent resources in the Firely Server Data database.

These features can be enabled by including Vonk.Plugins.Audit in the pipeline.

"PipelineOptions": {
"PluginDirectory": "./plugins",
"Branches": [

{
"Path": "/",
"Include": [

"Vonk.Core",
...
"Vonk.Plugin.Audit"

],
...

},
...

]
}

See Configure the pipeline for more details on pipeline configuration.

At present, you can choose either to enable both file and database logging, or only database logging. To enable only
database logging, replace Vonk.Plugin.Audit with Vonk.Plugin.Audit.AuditEventConfiguration. In addition, you can
choose to log every call or only transaction batches. When you include a specific configuration class and want to enable
username logging, you have to include Vonk.Plugin.Audit.UsernameLoggingConfiguration. Please see Auditing for the
available options.

10.11.1 Filtering configuration

You can exclude requests from generating audit logs (both audit log file and audit event logging). This is helpful to
reduce clutter in the logs. For example, you could exclude logging for an endpoint that is used for health monitoring of
the server. The example below disables audit logging for all GET requests to /Patient and sub resources or operations.

"Audit": {
"ExcludedRequests": [

{
"UrlPath": "/Patient",
"Method": "GET"

},
{

"UrlPath": "/Patient/*",
"Method": "GET"

}
]

},

10.11. Auditing 205

Firely Server

The UrlPath property is required, but not otherwise checked (e.g. if it points to an existing resource). The wildcard (*)
can be used to expand matching in different ways, e.g.:

• /Medication* will match /Medication, /MedicationRequest, /MedicationAdministration, etc

• /$* will match all system level operations

• /*/*/$validate will match all validation operations on all resources

The Method property is optional. If left out, null, empty or given the value *, it will match all HTTP verbs. You can
enter multiple verbs, delimited by the | symbol (e.g. GET|POST).

10.11.2 Audit log file configuration

File

Configure where to put the audit log file and the format of its lines in a separate file named audit.logsettings.json.
Just like the Firely Server application logging, the audit log also uses Serilog for logging audit events. The audit
log settings are controlled in json configuration files called audit.logsettings(.*).json. The files are read in a
hierarchy, exactly like the appsettings files are. Firely Server comes with default settings in audit.logsettings.
default.json. You can adjust the way Firely Server logs its information by overriding these settings by either
adding an additional file called audit.logsettings.json or audit.logsettings.instance.json, or in audit.
logsettings.default.json directly. Alternatively you can control Audit log settings with Environment Variables.

{
"AuditLog": {

"WriteTo": [
{

"Name": "Async",
"Args": {

"configure": [
{

"Name": "File",
"Args": {

"path": "./audit/AuditLog.log",
"rollingInterval": "Day",
"fileSizeLimitBytes": "",
"outputTemplate": "{Timestamp:yyyy-MM-dd HH:mm:ss.fff zzz} [

→˓{Application}] [Audit] {RequestResponse} [Machine: {MachineName}] [ReqId: {RequestId}]␣
→˓[IP-Address: {Ip}] [Connection: {ConnectionId}] [UserId: {UserId}] [Username:
→˓{Username}] [Path: {Path}] [Parameters: {Parameters}] [Action: {Action}] [Resource:
→˓{Resource} Key:{ResourceKey}] [StatusCode: {StatusCode}] {NewLine}"

}
}

]
}

}
]

}
}

The values that you can set for the File sink Args are:

• path: The location where the audit log file should be stored.

206 Chapter 10. Features

Firely Server

• rollingInterval: When this interval expires, the log system will start a new file. The start datetime of each
interval is added to the filename. Valid values are Infinite, Year, Month, Day, Hour, Minute.

• fileSizeLimitBytes: Limit the size of the log file, which is 1GB by default. When it is full, the log system
will start a new file.

The OutputTemplate listed here contains all the properties that can be logged:

• Timestamp:yyyy-MM-dd HH:mm:ss.fff zzz: When this was logged, with formatting.

• Application: Firely Server

• RequestResponse: indicates wether the audit event was a request or a response.

• MachineName: Name of the machine hosting the Firely Server instance. Especially useful when running multiple
instances all logging to the same file.

• RequestId: Unique id of this request, use this to correlate request and response.

• Ip: IP Address of the client.

• ConnectionId: Use this to correlate requests from the same client.

• UserId: User id from the JWT token (if present).

• Username: User name from the JWT token (if present).

• Path: Request url.

• Parameters: The request parameters used.

• Action: Interaction that was requested (like instance_read or type_search).

• Resource: Resourcetype involved.

• ResourceKey: ‘Key’ of the resource involved (if any), consisting of the resourcetype and the id, formatted as
“resourcetype/id”.

• StatusCode: Statuscode of the response at the time of logging (by default ‘-1’ when the request is not handled
yet).

For transactions and batches, the audit plugin will write a line for the transaction/batch as a whole and one for every
entry in the transaction/batch.

Seq

Because we use Serilog for logging audit events, other Log sinks like Seq are also supported. Seq is a web interface to
easily inspect structured logs.

For the Seq sink, you can also specify arguments. One of them is the server URL for your Seq server:

"WriteTo": [
{

"Name": "Seq",
"Args": { "serverUrl": "http://localhost:5341" }

}

• Change serverUrl to the URL of your Seq server

10.11. Auditing 207

https://datalust.co/seq

Firely Server

Audit Log reliability and performance considerations

The default Serilog log sink in audit.logsettings.default.json is a asynchronous wrapper around a File sink,
which means that audit log messages are pushed to a background worker thread to be written to the log file on disk. This
improves application performance as the writing to the audit log is non-blocking. The async wrapper uses a buffer to
collect the messages that need to be logged. For the current Serilog Async implementation, the default memory buffer
feeding the worker thread is capped to 10,000 items. If this limit is reached any further log events will be dropped
until the buffer is below this limit again. To change the limit you can add bufferSize to the audit logsettings. See
Serilog.Sinks.Async for more details.

In normal circumstances the buffer will regularly be flushed to the underlying sink. However, when the buffer limit does
get reached the reliability of writing messages is compromised and some messages will get lost while the async wrapper
tries to recover. If reliability of the auditing is very important, you might want to consider using a synchronous file sink
instead. See the audit.logsettings.default.json for an example of a synchronous File sink configuration.

{
"AuditLog": {

"WriteTo": [
{

"Name": "File",
"Args": {

"path": "./audit/AuditLog.log",
"rollingInterval": "Day",
"fileSizeLimitBytes": "",
"outputTemplate": "{Timestamp:yyyy-MM-dd HH:mm:ss.fff zzz} [{Application}

→˓] [Audit] {RequestResponse} [Machine: {MachineName}] [ReqId: {RequestId}] [IP-Address:
→˓{Ip}] [Connection: {ConnectionId}] [UserId: {UserId}] [Username: {Username}] [Path:
→˓{Path}] [Parameters: {Parameters}] [Action: {Action}] [Resource: {Resource} Key:
→˓{ResourceKey}] [StatusCode: {StatusCode}] {NewLine}"

}
}

]
}

}

The downside is that writing to the audit log is blocking and Firely Server now has to wait on the log to finish before it
can continue, which in turn affects performance. You will have to try and test what works best for your use case.

10.11.3 AuditEvent logging

There is no further configuration for AuditEvent logging. If you include it in the pipeline, it will start generating
AuditEvent resources.

For transactions and batches the audit plugin will create an AuditEvent for the transaction/batch as a whole and one for
every entry in the transaction/batch.

Firely Server does not allow you to update or delete the AuditEvent resources through the RESTful API so the Audit
log cannot be tampered with. You can of course still manipulate these resources directly on the database, for instance
to offload a surplus of old AuditEvent resources elsewhere. Please Contact us us for details if you want to do this.

208 Chapter 10. Features

https://github.com/serilog/serilog-sinks-async

Firely Server

10.12 Reset the database

If you have set up Firely Server as a reference server in a testing environment, it can be useful to reset the database.
You would usually do this in combination with Preloading resources.

To reset the database, execute:

POST http(s)://<firely-server-endpoint>/administration/reset

Firely Server will return statuscode 200 if the operation succeeded.

If you are not permitted to perform the reset, Firely Server will return statuscode 403.

Note: On a large database this operation may take a while.

An alternative, if you have direct access to the database server, is to delete the database altogether and have Firely
Server recreate it again.

• If you run on SQL Server, see Using SQL server for the AutoUpdateDatabase feature.

• If you run on MongoDB, Firely Server will recreate the collection by default if it is not present.

Although the operation requires no further arguments, it requires a POST, since it is certainly not side-effect free.

10.13 Preloading resources

Caution: Preload in Firely Server (Vonk) 3.0.0 is only available for STU3.

If you have set up Firely Server as a reference server in a testing environment, it can be useful to load it with an ‘iron
test set’ of examples. You can do that with the preload feature. Usually you will want to Reset the database first.

To preload a set of resources, execute:

POST http(s)://<firely-server-endpoint>/administration/preload
Content-Type: application/octet-stream
Body: a zip file with resources, each resource in a separate file (xml or json).

Firely Server will return statuscode 200 if the operation succeeded.

If you are not permitted to preload resources into the database, Firely Server will return statuscode 403.

Note: The operation can take quite long if the zip contains many resources. E.g. when uploading the examples-
json.zip from the specification, it took about a minute on MongoDb and about 7 minutes on SQL Server on a simple
test server.

Attention: This feature is not meant for bulk uploading really large sets of resources. Firely Server currently has
no special operation for bulk operations.

10.12. Reset the database 209

http://www.hl7.org/fhir/examples-json.zip
http://www.hl7.org/fhir/examples-json.zip

Firely Server

10.14 Multiple versions of FHIR

Since version 3.0.0 Firely Server can run multiple versions of FHIR side-by-side in the same server. This page explains
how this works and what the consequences are.

10.14.1 Requests

The FHIR Specification explains the mimetype parameter that distinguishes one FHIR version from another in the
paragraph on the FHIR Version parameter. Firely Server uses this approach to let you choose the model for your
request. Below are examples on how to use the fhirVersion parameter and how in influences the behaviour of Firely
Server. Accepted values for the parameter are:

• fhirVersion=3.0, for FHIR STU3

• fhirVersion=4.0, for FHIR R4

You can add the fhirVersion to the Accept and/or the Content-Type header. If you specify it on both, the fhirVersion
parameters have to be the same.

Note: The fhirVersion parameter is also part of the Content-Type header of the response by Firely Server. Settings
can control this, see Running different versions on different endpoints below.

The examples below explain the behaviour with STU3, but if you replace fhirVersion with 4.0, it works exactly the
same on R4.

Note: If you do not specify a fhirVersion parameter, Firely Server will use fhirVersion=3.0 (STU3) as a default. This
way the behaviour is compatible with previous versions of Firely Server. If you like, you can change the Default in
Information model

Note: If you use both an Accept header and a Content-Type header, the fhirVersion parameter for both must be the
same. So this would be invalid:

POST <base>/Patient
Accept=application/fhir+json; fhirVersion=3.0
Content-Type=application/fhir+json; fhirVersion=4.0

Search for all Patients in STU3. In Firely Server this means Patient resources that were also stored as STU3. There is
no automatic conversion of resources that were stored as R4 to the STU3 format (or vice versa).

GET <base>/Patient
Accept=application/fhir+json; fhirVersion=3.0

Search for Patients with the name ‘Fred’ in STU3. The search parameters used in the query must be valid in STU3.

GET <base>/Patient?name=Fred
Accept=application/fhir+json; fhirVersion=3.0

Create a Patient resource in STU3. This will only be retrievable when accessed with STU3:

210 Chapter 10. Features

http://hl7.org/fhir/R4/http.html#version-parameter

Firely Server

POST <base>/Patient
Content-Type=application/fhir+json; fhirVersion=3.0
Accept=application/fhir+json; fhirVersion=3.0

{<valid Patient JSON body>}

Update a Patient resource in STU3.:

PUT <base>/Patient/123
Content-Type=application/fhir+json; fhirVersion=3.0
Accept=application/fhir+json; fhirVersion=3.0

{<valid Patient JSON body with id: 123>}

1. If no resource with this id existed before: it will be created with this id. (This was already always the behaviour
of Firely Server.)

2. If a resource with this id existed before, in STU3: update it.

3. If a resource with this id already exists in R4: you will get an error with an OperationOutcome saying that a
resource with this id already exists with a different informationmodel.

Note: Id’s still have to be unique within a resourcetype, regardless of the FHIR version.

Delete a Patient resource.:

DELETE <base>/Patient/123
Accept=application/fhir+json; fhirVersion=3.0

This will delete Patient/123, regardless of its FHIR version. The Accept header is needed for Firely Server to know
how to format an OperationOutcome if there is an error.

10.14.2 Conformance resources

Conformance resources like StructureDefinition and SearchParameter are registered per FHIR version. This implies:

1. Conformance resources will be imported during Import of Conformance Resources for both STU3 and R4. To
avoid id clashes (see note above), the id’s in R4 are appended with ‘-Fhir4.0’

1. So the StructureDefinition for Patient will be available for STU3 and R4 respectively like this:

GET <base>/StructureDefinition/Patient
Accept=application/fhir+json; fhirVersion=3.0

GET <base>/StructureDefinition/Patient-Fhir4.0
Accept=application/fhir+json; fhirVersion=4.0

2. If you add a StructureDefinition or SearchParameter via the Administration API, you can decide for yourself
whether to append the FHIR version to the id or not. Just note that you cannot use the same id for different FHIR
versions.

3. Depending on the fhirVersion parameter Firely Server evaluates whether a resourcetype or searchparameter is
valid in that FHIR version. E.g. ‘VerificationResult’ is only valid in R4, but ‘DataElement’ is only valid in R3.

10.14. Multiple versions of FHIR 211

Firely Server

4. For validation, the StructureDefinitions and terminology resources needed are only searched for in the FHIR
version of the resource that is being validated.

5. When you Manage Conformance Resources with the Administration API , a StructureDefinition can only
be posted to the Administration API in the context of a FHIR Version that matches the StructureDefini-
tion.fhirVersion. So this works:

POST <base>/administration/StructureDefinition
Accept=application/fhir+json; fhirVersion=4.0
Content-Type=application/fhir+json; fhirVersion=4.0

{
"resourcetype": "StructureDefinition"
...
"fhirVersion": "4.0.0" //Note the FHIR version matching the Content-Type

}

But it would not work if "fhirVersion"="3.0.1"

6. If you Load Conformance Resources on demand, this will be done for all the importfiles described above, re-
gardless of the fhirVersion in the Accept header.

10.14.3 Running a single version

To use only a single version you set the Default information model in Information model to the version you want to
use. In addition, you can exclude the namespace of the version you don’t need (Vonk.Fhir.R3 or Vonk.Fhir.R4)
from the PipelineOptions to disable its use. If you exclude a namespace, make sure to exclude it from all branches.

10.14.4 Running different versions on different endpoints

To assign endpoints to different versions, create a mapping in Information model. Use the Mode switch to select either
a path or a subdomain mapping, assigning your endpoints in the Map array. Mapped endpoints will only accept the
version you have specified. The web service root (‘/’ and ‘/administration/’) will still accept all supported versions.

Assigning an endpoint to a FHIR version is exactly equivalent to adding that particular fhirVersionMIME parameter
to every single request sent to that endpoint. So using these settings:

"InformationModel": {
"Default": "Fhir4.0",
"IncludeFhirVersion": ["Fhir4.0", "Fhir5.0"],
"Mapping": {

"Mode": "Path",
"Map": {

"/R3": "Fhir3.0",
"/R4": "Fhir4.0"

}
}

}

The call

GET http://myserver.org/Patient
Accept=application/fhir+json; fhirVersion=3.0

(continues on next page)

212 Chapter 10. Features

Firely Server

(continued from previous page)

is equivalent to

GET http://myserver.org/R3/Patient

and the call

GET http://myserver.org/Patient (defaults to R4)

is equivalent to

GET http://myserver.org/R4/Patient

and the administration call

GET http://myserver.org/administration/StructureDefinition (defaults to R4)

is equivalent to

GET http://myserver.org/administration/R4/StructureDefinition (/R4 is a postfix to '/
→˓administration')

As you can see, on a mapped endpoint it is never necessary to use a FHIR _format parameter or a fhirVersion
MIME parameter in a Content-Type or Accept header.

Response Content-Type

The setting IncludeFhirVersion is used for the Content-Type of the response from Firely Server. Some clients
cannot handle a parameter on the mimetype, and the fhirVersion parameter was originally not part of FHIR STU3.
Therefore this settings allows you to specify for which FHIR versions this parameter should be included in the Content-
Type header. By default we set it to FHIR R4 and R5, as for STU3 the fhirVersion may be unexpected for clients.

10.14.5 Support for R5 (experimental!)

By default the binaries for supporting R5 are included in the Firely Server distribution (since Firely Server (Vonk)
3.3.0). By default these binaries are not loaded. See the PipelineOptions in appsettings.default, where Vonk.Fhir.R5
is commented out. Re-enable these in your appsettings.instance.

The creation of AuditEvents is currently not supported for R5. Please disable Vonk.Plugin.Audit in the root endpoint
of the PipelineOptions.

Note that there is not yet an errata_Fhir5.0.zip and Firely Server will complain about that in the log. You can
ignore that message.

10.14. Multiple versions of FHIR 213

Firely Server

10.15 HIPAA compliance

Firely Server is a well-tested, secure HL7 FHIR® server that enables you to comply with the Technical Safeguards of
the HIPAA Security Rule.

On this page we will detail how you can achieve compliance for your Firely Server deployment. To ensure your or-
ganisation’s specific usecase, environment, and deployment are compliant, feel free to contact us: we’d be happy to
help.

10.15.1 164.312(a)(1) Standard: Access control

Implement technical policies and procedures for electronic information systems that maintain electronic
protected health information to allow access only to those persons or software programs that have been
granted access rights as specified in 164.308(a)(4).

There are several ways to approach this:

1. ensure Firely Server is deployed in a secure environment where only those with correct permissions are able to
access it,

2. use SMART on FHIR as a means of controlling access,

3. or add custom authentication based on a plugin.

Deploying in a secure environment (1) would mean access to Firely Server is controlled by third-party software or
policy, placing this scenario outside the scope of this guide.

For scenario (2), Firely Server implements support for Smart on FHIR, a sibling specification to FHIR for securely
connecting third-party applications to Electronic Health Record data. See Access control and SMART on how to
configure Firely Server with it.

You may also wish to setup custom authentication (3). Given how Firely Server is based on a pipeline architecture, you
can insert a plugin at the start of the pipeline to call out to your authentication service(s) prior to handling the request.
See this gist as an example.

10.15.2 164.312(c)(1) Standard: Integrity

Implement policies and procedures to protect electronic protected health information from improper alter-
ation or destruction.

The same solutions apply to this point as 164.312(a)(1) Standard: Access control and 164.312(b) Standard: Audit
control.

10.15.3 164.312(d) Standard: Person or entity authentication

Implement procedures to verify that a person or entity seeking access to electronic protected health infor-
mation is the one claimed.

The same solutions apply to this point as 164.312(a)(1) Standard: Access control.

214 Chapter 10. Features

http://hl7.org/fhir/smart-app-launch/index.html
http://bit.ly/VonkAuthorizationMiddleware

Firely Server

10.15.4 164.312(a)(2)(i) Unique user identification

Assign a unique name and/or number for identifying and tracking user identity.

The same solution applies to this point as 164.312(b) Standard: Audit control. For Firely Server to be able to log the
identity of the user, this identity must be present in or derivable from the authentication token, and it must be added
to the log properties. If you use the SMART on FHIR plugin, that is automatically configured. If you want to do this
from within a custom authentication plugin, feel free to contact us for details.

10.15.5 164.312(b) Standard: Audit control

Implement hardware, software, and/or procedural mechanisms that record and examine activity in infor-
mation systems that contain or use electronic protected health information.

With the use of the Audit Event log plugin, Firely Server will thoroughly log every interaction as a note in a log file and/or
in an AuditEvent resource. Logged information will be a trace record of all system activity: viewing, modification,
deletion and creation of all Eletronic Protected Health Information (ePHI).

The audit trail can track the source IP, event type, date/time, and more. If a JWT token is provided (for SMART on
FHIR), the user/patient identity can be logged as well.

10.15.6 164.312(e)(1, 2) Standard: Transmission security

Implement technical security measures to guard against unauthorized access to electronic protected health
information that is being transmitted over an electronic communications network.

Implement a mechanism to encrypt electronic protected health information whenever deemed appropriate.

Transmission security in Firely Server can be achieved by encrypting the communications with TLS/SSL. Standard
industry practice is to use a reverse proxy (e.g. nginx or IIS) for this purpose. If you’d like, you can also enable secure
connections in Firely Server directly without a proxy as well.

Firely Server is regularly updated with the latest versions of ASP.NET to ensure that the latest cryptographic algorithms
are available for use.

10.15.7 164.312(e)(2)(ii) Encryption

Implement a mechanism to encrypt electronic protected health information whenever deemed appropriate.

The recommended way to ensure that e-PHI is encrypted as necessary is to use disk encryption, and there are several
solutions for this depending on your deployment environment. If you’re deploying in the cloud - see your vendors
options for disk encryption, as most have options for encrypted disks already. If you’re deploying locally, look into
BitLocker on Windows or dm-crypt/LUKS for Linux.

Disk encryption is preferred over individual database field encryption as the latter would severely impact the search
performance.

10.15. HIPAA compliance 215

Firely Server

10.15.8 164.312(a)(2)(ii) Emergency access procedure

Establish (and implement as needed) procedures for obtaining necessary electronic protected health infor-
mation during an emergency.

This depends on the solution you went with for 164.312(a)(1) Standard: Access control.

In case you went with SMART on FHIR, add an authorization workflow that grants emergency access rights - essentially,
a “super” access token. The application can then use this token with Firely Server, just like any other token.

If you went with a custom authentication scheme, add a special measure to handle this scenario.

10.15.9 164.312(a)(c) Implementation specification: Mechanism to authenticate
electronic protected health information

Implement electronic mechanisms to corroborate that electronic protected health information has not been
altered or destroyed in an unauthorized manner.

Firely Server does not allow you to delete resources through its RESTful API. Old versions of resources are retained
by default. The only way to alter or destroy resources is through direct database access.

Therefore database-level safety mechanisms must ensure that information is not altered or destroyed unless it’s desired.

10.16 $erase resources

10.16.1 Description

When Firely Server receives a DELETE request for a resource, it marks it as deleted in the database which makes it
hidden from search results. However, the data is still present in the database. This approach is known as soft deletion.
This comes in handy in scenarios when you want to recover accidentally deleted data. However, there are also scenarios
when you actually want the data to be erased from the database. For that purpose, Firely Server provides the $erase
operation.

The $erase operation can be executed on a resource instance level and a resource version level.

Examples

Use the following request to erase all versions (including the historical versions) of the Patient/example resource
from the database.

POST <base-url>/Patient/example/$erase

Use the following request to erase the specified version xyz and all the older versions (based on meta.lastUpdated) of
the Patient/example resource from the database.

POST <base-url>/Patient/example/_history/xyz/$erase

216 Chapter 10. Features

Firely Server

10.16.2 Appsettings

To enable the $erase operation you will first have to make sure the plugin Vonk.Plugin.EraseOperation.
EraseOperationConfiguration is added to the PipelineOptions in the appsettings.

"PipelineOptions": {
"PluginDirectory": "./plugins",
"Branches": [
{
"Path": "/",
"Include": [
...
"Vonk.Plugin.EraseOperation.EraseOperationConfiguration"

],
"Exclude": [
...

]
}, ...etc...

10.16.3 AuditEvents

• It is not allowed to erase AuditEvents

• AuditEvents for the $erase operation will contain the list of deleted items

10.16.4 License

The $erase operation is part of the core Firely Server functionality. However, to use it, you may need to request an
updated license from Firely. You can use your current license file if it contains http://fire.ly/vonk/plugins/
erase.

10.16. $erase resources 217

Firely Server

218 Chapter 10. Features

CHAPTER

ELEVEN

COMPLIANCE WITH NATIONAL IMPLEMENTATIONGUIDES AND
CERTIFICATION PROGRAMS

The following section will highlight against which national ImplementationGuides and certification programs Firely
Server has been successfully tested. Additionally, any necessary configuration to re-produce these testing results will
be outlined.

11.1 US CORE

• Tested Version: Firely Server has been tested against US Core Version 3.1.1 - STU3 Release

• All StructureDefinitions for profiles and extensions are loaded by default in the standard SQLite Administration
Database of Firely Server. No additional configuration needed in order to validate against these conformance
resources.

• Firely Server provides full “Profile Support and Interaction Support”:

– Firely Server can be populated with resources conforming to US Core, including all elements marked as
Must-Support

– All search and CRUD interactions defined by US Core are supported, including optional search parameters

See How to Test Firely Server on Inferno for more information on how to pass the official 21st Century Cures Act test.

11.1.1 Known Limitations

• In order to validate resources claiming to conform to US Core, it is necessary to configure Firely Server to use an
external terminology server incl. support for expanding SNOMED CT and LOINC ValueSets. See Terminology
services.

• The $docref operation is not yet supported on DocumentReference resources

• No conformance claim is added by default to CapabilityStatement.instantiates

219

https://hl7.org/fhir/us/core/STU3.1.1/terminology.html
http://hl7.org/fhir/us/core/STU4/conformance-expectations.html#profile-support--interaction-support
https://fire.ly/ebook-how-to-test-firely-server-on-inferno/

Firely Server

11.1.2 Test Data

Firely provides test data covering all US-Core profiles and all elements marked as Must-Support. In order to load all
examples, two transaction bundles need to be posted against the base endpoint of Firely Server. The following Postman
collection provides you with the bundles itself, and the bundle entries as individual PUT requests.

The following steps are necessary in order to execute the test collection against our own Firely Server instance:

1. Select “Fork Collection” or “View collection” in the Postman dialog

2. Sign-In with your Postman account

3. Create a new Postman environment with a “BASE_URL” variable and adjust the URL to your server endpoint

4. Make sure that the newly created environment is selected as the active environment

5. Open the collection “Firely Server - US Core Tests”

220 Chapter 11. Compliance with national ImplementationGuides and certification programs

https://learning.postman.com/docs/sending-requests/managing-environments/#creating-environments

Firely Server

6. Execute the transaction request, the expected response is “HTTP 200 - OK”.

11.2 Nictiz

• Tested Version: Firely Server has been tested against nictiz.fhir.nl.stu3.zib2017 version 2.1.12

• The conformance resources are NOT loaded by default in the standard SQLite Administration Database of Firely
Server. Please see Import of Conformance Resources on how to load the profiles, extensions and ValueSets into
Firely Server.

11.2.1 Known Limitations

The following tickets represent outstanding issues with the above-mentioned specification:

• https://bits.nictiz.nl/browse/MM-3218

• https://bits.nictiz.nl/browse/MM-3219

• https://bits.nictiz.nl/browse/MM-3221

• https://bits.nictiz.nl/browse/MM-3222

11.2. Nictiz 221

https://simplifier.net/nictizstu3-zib2017
https://bits.nictiz.nl/browse/MM-3218
https://bits.nictiz.nl/browse/MM-3219
https://bits.nictiz.nl/browse/MM-3221
https://bits.nictiz.nl/browse/MM-3222

Firely Server

These issues do not influence the validation of instances against the erroneous profiles. However, the profiles cannot
be loaded via the administration REST API as the validation on that endpoint will reject the StructureDefinitions.

11.2.2 Test Data

Offical test data can be found in the Simplifier project for Nictiz STU3 Zib 2017.

222 Chapter 11. Compliance with national ImplementationGuides and certification programs

https://simplifier.net/NictizSTU3-Zib2017/~introduction

CHAPTER

TWELVE

FIRELY SERVER ADMINISTRATION API

Besides the regular FHIR endpoint, Firely Server also exposes an Administration API. The endpoint for this is:

http(s)://<firely-server-endpoint>/administration

12.1 Functions

The following functions are available in the Administration API.

• Conformance Resources

• Subscriptions

• Re-indexing for new or changed SearchParameters

• Reset the database

• Preloading resources

• Terminology services

12.2 Configuration

You can Configure the Administration API , including restricting access to functions of the Administration API to
specific ip addresses.

12.3 Database

The Administration API uses a database separately from the main ‘Firely Server Data’ database. Historically, SQL
Server, MongoDB and Memory are supported as databases for the Administration API. As of Firely Server (Vonk)
version 0.7.1, SQLite is advised for this, and we have made that the default configuration. See Using SQLite on how to
configure for this.

223

Firely Server

224 Chapter 12. Firely Server Administration API

CHAPTER

THIRTEEN

FIRELY SERVER PLUGINS

Firely Server Plugins is the means to adjust a Firely Server to your own special needs, beyond the configuration. Please
have a look at the Overview of Firely Server, Plugins and Facades to see how plugins fit in the Firely Server. Architecture
provides more detail on that.

13.1 Configure the pipeline

Configuration of the pipeline in Firely Server is done with PipelineOptions in combination with
SupportedInteractions. A default setup is installed with Firely Server in appsettings.default.json, and it
looks like this:

"PipelineOptions": {
"PluginDirectory": "./plugins",
"Branches": [
{
"Path": "/",
"Include": [
"Vonk.Core",
"Vonk.Fhir.R3",
"Vonk.Fhir.R4",
"Vonk.Repository.Sql.SqlVonkConfiguration",
"Vonk.Repository.Sqlite.SqliteVonkConfiguration",
"Vonk.Repository.MongoDb.MongoDbVonkConfiguration",
"Vonk.Repository.Memory.MemoryVonkConfiguration",
"Vonk.Subscriptions",
"Vonk.Smart",
"Vonk.UI.Demo",
"Vonk.Plugins.Terminology",
"Vonk.Plugin.DocumentOperation.DocumentOperationConfiguration",
"Vonk.Plugin.ConvertOperation.ConvertOperationConfiguration",
"Vonk.Plugin.BinaryWrapper.BinaryWrapperConfiguration",
"Vonk.Plugin.MappingToStructureMap.MappingToStructureMapConfiguration",
"Vonk.Plugin.TransformOperation.TransformOperationConfiguration"

],
"Exclude": [
"Vonk.Subscriptions.Administration"

]
},
{
"Path": "/administration",

(continues on next page)

225

Firely Server

(continued from previous page)

"Include": [
"Vonk.Core",
"Vonk.Fhir.R3",
"Vonk.Fhir.R4",
"Vonk.Repository.Sql.SqlAdministrationConfiguration",
"Vonk.Repository.Sqlite.SqliteAdministrationConfiguration",
"Vonk.Repository.MongoDb.MongoDbAdminConfiguration",
"Vonk.Repository.Memory.MemoryAdministrationConfiguration",
"Vonk.Subscriptions.Administration",
"Vonk.Plugins.Terminology",
"Vonk.Administration"

],
"Exclude": [
"Vonk.Core.Operations",
"Vonk.Core.Licensing.LicenseRequestJobConfiguration"

]
}

]
},
"SupportedInteractions": {
"InstanceLevelInteractions": "read, vread, update, delete, history, conditional_delete,

→˓ conditional_update, $validate, $validate-code, $expand, $compose, $meta, $meta-add,
→˓$document",
"TypeLevelInteractions": "create, search, history, conditional_create, compartment_

→˓type_search, $validate, $snapshot, $validate-code, $expand, $lookup, $compose,
→˓$document",
"WholeSystemInteractions": "capabilities, batch, transaction, history, search,␣

→˓compartment_system_search, $validate, $convert"
},

PluginDirectory:
You can put plugins of your own (or third party) into this directory for Firely Server to pick them up, without
polluting the Firely Server binaries directory itself. For a list of available plugins in Firely Server, see Plugins
available for Firely Server. The directory in the default setting of ./plugins is not created upon install, you
may do this yourself if you want to add a plugin.

PluginDirectory.Branches:
A web application can branch into different paths, and Firely Server has two by default:

• /: the root branch, where the main FHIR RESTful API is hosted;

• /administration: where the Firely Server Administration API is hosted.

Branches contains a subdocument for each of the defined paths:

Path
The path for this branch. This is the part after the base URL that Firely Server is hosted on.

Include
(Prefixes of) Configuration classes that add services and middleware to Firely Server.

Exclude
(Prefixes of) Configuration classes that may not be executed. Exclude overrides Include and is useful if
you want to use all but one configuration class from a namespace.

SupportedInteractions:
A comma-separated list of all interactions Firely Server should enable on [base]/[type]/[id] (In-

226 Chapter 13. Firely Server Plugins

Firely Server

stanceLevelInteractions), [base]/[type] (TypeLevelInteractions), and [base] (WholeSystemInteractions)
levels. Firely Server will use this list to enable/disable supported interactions and reflect it in /metadata ac-
cordingly.

If you’d like to limit what operations your Firely Server supports, remove them from this list.

If you’ve added a custom plugin that enables a new interaction, make sure to load the plugin (see
PluginDirectory above) and enable the interaction in this list. For example, if you’ve added the Vonk.
Plugin.ConvertOperation $convert plugin in PipelineOptions.Branches.Include, make sure to en-
able the operation $convert as well:

"WholeSystemInteractions": "$convert, capabilities, batch, transaction, history,␣
→˓search, compartment_system_search, $validate"

13.2 Configuration classes

A configuration class is a static class with two public static methods having the signature as below, that can add services
to the Firely Server dependency injection system, and add middleware to the pipeline.

[VonkConfiguration (order: xyz)] //xyz is an integer
public static class MyVonkConfiguration
{
public static void ConfigureServices(IServiceCollection services)
{
//add services here to the DI system of ASP.NET Core

}

public static void Configure(IApplicationBuilder builder)
{
//add middleware to the pipeline being built with the builder

}
}

As you may have noticed, the methods resemble those in an ASP.NET Core Startup class. That is exactly where they
are ultimately called from. We’ll explain each of the parts in more detail.

VonkConfiguration
This is an attribute defined by Firely Server (package Vonk.Core, namespace
Vonk.Core.Pluggability). It tells Firely Server to execute the methods in this configuration
class. The order property determines where in the pipeline the middleware will be added. You can
see the order of the plugins in the log at startup.

MyVonkConfiguration
You can give the class any name you want, it will be recognized by Firely Server through the attribute,
not the classname. We do advise you to choose a name that actually describes what is configured. It is
also better to have multiple smaller configuration classes than one monolith adding all your plugins,
so you allow yourself to configure your plugins individually afterwards.

ConfigureServices
The main requirements for this method are:

• It is public static;

• It has a first formal argument of type Microsoft.Extensions.DependencyInjection.
IServiceCollection;

13.2. Configuration classes 227

Firely Server

• It is the only method in this class matching the first two requirements.

This also means that you can give it a different name. Beyond that, you may add formal arguments
for services that you need during configuration. You can only use services that are available from the
ASP.NET Core hosting process, not any services you have added yourself earlier. Usual services to
request are:

• IConfiguration

• IHostingEnvironment

These services will be injected automatically by Firely Server. See below for additional guidance on
how to register services in the DI container.

Configure
The main requirements for this method are:

• It is public static;

• It has a first formal argument of type Microsoft.AspNetCore.Buider.
IApplicationBuilder;

• It is the only method in this class matching the first two requirements.

This also means that you can give it a different name. Beyond that, you may add formal arguments for
services that you may need during configuration. Here you can use services that are available from
the ASP.NET Core hosting process and any services you have added yourself earlier. For services in
request scope please note that this method is not run in request scope. These services will be injected
automatically by Firely Server.

We provided an example of this: creating your own landing page.

13.2.1 Register a service in your plugin

Often you will want to use .NET Core provided services, or services from other common libraries in your Facade or
plugin. Firely Server itself may or may not register the same service or interface already. There is a safe way to register
a service if it is not registered already. The example below shows that for an IMemoryCache:

public static IServiceCollection ConfigureServices(this IServiceCollection␣
→˓services)
{
services.TryAddSingleton<IMemoryCache, MemoryCache>();

}

//using it in a constructor
public class MyPluginService{
public MyPluginService(IMemoryCache cache){...}

}

However, should Firely Server itself have registered a service for the same interface already, you will get that one
injected. Even safer is to make sure you get your own injected, e.g. by registering a derived class:

public class MyMemoryCache: MemoryCache{}

public static IServiceCollection ConfigureServices(this IServiceCollection␣
→˓services)
{
services.TryAddSingleton<MyMemoryCache>();

(continues on next page)

228 Chapter 13. Firely Server Plugins

Firely Server

(continued from previous page)

}

//using it in a constructor
public class MyPluginService{
public MyPluginService(MyMemoryCache cache){...}

}

13.3 Detailed logging of loading plugins

If your plugin or any of the Firely Server plugins appears not to be loaded correctly, you may inspect what happens in
more detail in the log. See Log settings for where you can find the log file. You can vary the log level for Vonk.Core.
Pluggability.VonkConfigurer to hide or reveal details.

On the Information level, Firely Server will tell you which assemblies are loaded and searched for
VonkConfiguration attributes:

Looking for Configuration in these assemblies:
C:\data\dd18\vonk_preview\Vonk.Administration.Api.dll
C:\data\dd18\vonk_preview\Vonk.Core.dll
C:\data\dd18\vonk_preview\Vonk.Fhir.R3.dll
C:\data\dd18\vonk_preview\Vonk.Fhir.R4.dll
C:\data\dd18\vonk_preview\Vonk.Repository.Generic.dll
C:\data\dd18\vonk_preview\Vonk.Repository.Memory.dll
C:\data\dd18\vonk_preview\Vonk.Repository.MongoDb.dll
C:\data\dd18\vonk_preview\Vonk.Repository.Sql.dll
C:\data\dd18\vonk_preview\vonk.server.dll
C:\data\dd18\vonk_preview\Vonk.Server.PrecompiledViews.dll
C:\data\dd18\vonk_preview\Vonk.Smart.dll
C:\data\dd18\vonk_preview\Vonk.Subscriptions.dll
C:\data\dd18\vonk_preview\Vonk.UI.Demo.dll
C:\data\dd18\vonk_preview\plugins\Visi.Repository.dll
C:\data\dd18\vonk_preview\plugins\Vonk.Facade.Relational.dll

Also on the Information level, Firely Server will show the services and middleware as it has loaded, in order. The
list below is also the default pipeline as it is configured for Firely Server.

Configuration:
/

FhirR3Configuration [100] | Services: V | Pipeline: X
FhirR4Configuration [101] | Services: V | Pipeline: X
MetadataConfiguration [110] | Services: V | Pipeline: X
LicenseConfiguration [120] | Services: V | Pipeline: X
SerializationConfiguration [130] | Services: V | Pipeline: X
RepositorySearchSupportConfiguration [140] | Services: V | Pipeline: X
RepositoryIndexSupportConfiguration [141] | Services: V | Pipeline: X
PluggabilityConfiguration [150] | Services: V | Pipeline: X
ViSiConfiguration [240] | Services: V | Pipeline: X
DemoUIConfiguration [800] | Services: V | Pipeline: V
VonkToHttpConfiguration [1110] | Services: V | Pipeline: V
VonkFeaturesExtensions [1120] | Services: X | Pipeline: V
FormatConfiguration [1130] | Services: V | Pipeline: V

(continues on next page)

13.3. Detailed logging of loading plugins 229

Firely Server

(continued from previous page)

LongRunningConfiguration [1170] | Services: V | Pipeline: V
VonkCompartmentsExtensions [1210] | Services: X | Pipeline: V
SupportedInteractionConfiguration [1220] | Services: V | Pipeline: V
UrlMappingConfiguration [1230] | Services: V | Pipeline: V
ElementsConfiguration [1240] | Services: V | Pipeline: V
FhirBatchConfiguration [3110] | Services: V | Pipeline: V
FhirTransactionConfiguration [3120] | Services: V | Pipeline: V
SubscriptionConfiguration [3200] | Services: V | Pipeline: V
ValidationConfiguration [4000] | Services: V | Pipeline: V
DefaultShapesConfiguration [4110] | Services: V | Pipeline: V
CapabilityConfiguration [4120] | Services: V | Pipeline: V
IncludeConfiguration [4210] | Services: V | Pipeline: X
SearchConfiguration [4220] | Services: V | Pipeline: V
ProfileFilterConfiguration [4310] | Services: V | Pipeline: V
PrevalidationConfiguration [4320] | Services: V | Pipeline: V
ReadConfiguration [4410] | Services: V | Pipeline: V
CreateConfiguration [4420] | Services: V | Pipeline: V
UpdateConfiguration [4430] | Services: V | Pipeline: V
DeleteConfiguration [4440] | Services: V | Pipeline: V
ConditionalCreateConfiguration [4510] | Services: V | Pipeline: V
ConditionalUpdateConfiguration [4520] | Services: V | Pipeline: V
ConditionalDeleteConfiguration [4530] | Services: V | Pipeline: V
HistoryConfiguration [4610] | Services: V | Pipeline: V
VersionReadConfiguration [4620] | Services: V | Pipeline: V
InstanceValidationConfiguration [4840] | Services: V | Pipeline: V
SnapshotGenerationConfiguration [4850] | Services: V | Pipeline: V

/administration
SqlVonkConfiguration [220] | Services: V | Pipeline: X
SqlAdministrationConfiguration [221] | Services: V | Pipeline: X
DatabasePluggabilityConfiguration [300] | Services: V | Pipeline: X
VonkToHttpConfiguration [1110] | Services: V | Pipeline: V
VonkFeaturesExtensions [1120] | Services: X | Pipeline: V
FormatConfiguration [1130] | Services: V | Pipeline: V
SecurityConfiguration [1150] | Services: V | Pipeline: V
AdministrationOperationConfiguration [1160] | Services: V | Pipeline: V
LongRunningConfiguration [1170] | Services: V | Pipeline: V
VonkCompartmentsExtensions [1210] | Services: X | Pipeline: V
SupportedInteractionConfiguration [1220] | Services: V | Pipeline: V
UrlMappingConfiguration [1230] | Services: V | Pipeline: V
ElementsConfiguration [1240] | Services: V | Pipeline: V
DefaultShapesConfiguration [4110] | Services: V | Pipeline: V
AdministrationSearchConfiguration [4221] | Services: V | Pipeline: V
ValidationConfiguration [4310] | Services: V | Pipeline: X
SubscriptionValidationConfiguration [4330] | Services: V | Pipeline: V
ChangeInterceptionConfiguration [4390] | Services: X | Pipeline: V
AdministrationReadConfiguration [4411] | Services: V | Pipeline: V
AdministrationCreateConfiguration [4421] | Services: V | Pipeline: V
AdministrationUpdateConfiguration [4431] | Services: V | Pipeline: V
AdministrationDeleteConfiguration [4441] | Services: V | Pipeline: V
AdministrationImportConfiguration [5000] | Services: V | Pipeline: V
CodeSystemLookupConfiguration [5110] | Services: V | Pipeline: V
ValueSetValidateCodeInstanceConfiguration [5120] | Services: V | Pipeline: V

(continues on next page)

230 Chapter 13. Firely Server Plugins

Firely Server

(continued from previous page)

ValueSetValidateCodeTypeConfiguration [5130] | Services: V | Pipeline: V
ValueSetExpandInstanceConfiguration [5140] | Services: V | Pipeline: V
ValueSetExpandTypeConfiguration [5150] | Services: V | Pipeline: V
CodeSystemComposeInstanceConfiguration [5160] | Services: V | Pipeline: V
CodeSystemComposeTypeConfiguration [5170] | Services: V | Pipeline: V

It shows all the configuration classes it found, and whether a ConfigureServices and / or a Configure method was
found and executed. It also displays the value of the order property of the VonkConfiguration attribute for each
configuration class. This allows you to determine an appropriate order for your own configuration class.

On the Verbose level, Firely Server will also tell you why each configuration class that is found is being included or
excluded. An example:

2018-07-02 12:58:10.586 +02:00 [Firely Server] [Verbose] [Machine: XYZ] [ReqId:]␣
→˓Searching for configurations in assembly "Vonk.Core, Version=0.7.0.0, Culture=neutral,␣
→˓PublicKeyToken=null"
2018-07-02 12:58:10.625 +02:00 [Firely Server] [Verbose] [Machine: XYZ] [ReqId:] "Vonk.
→˓Core.Serialization.SerializationConfiguration" was included on "/" because it matches␣
→˓the include "Vonk.Core"
2018-07-02 12:58:10.625 +02:00 [Firely Server] [Verbose] [Machine: XYZ] [ReqId:] "Vonk.
→˓Core.Serialization.SerializationConfiguration" was not included on "/administration"␣
→˓because it did not match any include

13.4 The order of plugins

Firely Server is organized as a pipeline of components - called Middleware. Every request travels through all the
components until one of the components provides the response to the request. After that, the response travels back
through all the components, in reverse order. Components that come after the responding component in the pipeline
are not visited at all.

So let’s say you issue a FHIR read interaction, GET <base-url>/Patient/example. The component implementing
this interaction sits in the pipeline after search but before create. So the request will visit the search middleware (that
will ignore it and just pass it on) but will never visit the create middleware.

So many components implement an interaction and provide a response to that interaction. In Firely Server those are
called Handlers. Some components may not provide responses directly, but read or alter the request on the way in.
Such a component is called a PreHandler. Reversely, a component may read or alter the response on the way back.
Such a component is called a PostHandler.

A plugin can configure its own component in this pipeline but as you may understand by now it makes a difference
where in the pipeline you put that component. Especially if it is a Pre- or PostHandler. To control the position in the
pipeline, Firely Server uses the concept of ‘Order’.

The VonkConfiguration attribute lets you define an Order for your component. This page explains how to choose a
suitable number for that order.

13.4. The order of plugins 231

Firely Server

13.4.1 Inspect order numbers in use

When you start Firely Server, the log lists all the loaded plugins, with their order. You can see an example here. Also
the list of Plugins available for Firely Server includes the order number chosen for each of those plugins.

13.4.2 Minimum order

Registering services

The order is mainly relevant for middleware that you register in the pipeline, in the
Configure(IApplicationBuilder app) method. Some plugins, like e.g. a Facade implementation, only need
to register services for the dependency injection framework, in the ConfigureServices(IServiceCollection
services) method. If that is the case, the order is only relevant if you need to override a registration done by Firely
Server. There are two ways:

1. Choose an order before Firely Server’s default registration. Firely Server in general uses TryAddSingleton or
TryAddScoped to register an implementation of an interface. This means that if an implementation is already
registered, the TryAdd. . . will not register a second implementation.

As an example: if you want to override the registration of IReadAuthorizer: that is registered from the Repos-
itorySearchSupport plugin, with order 140. So you would choose an order lower than 140.

2. Choose a high order (e.g. > 10000) and make sure your registration overwrites any existing registration.

services.AddOrReplace<IReadAuthorizer, MyReadAuthorizer>(ServiceLifetime.Scoped);

The latter method is the least error prone and therefore recommended.

If you only need to register interfaces and/or classes defined by your plugin, the order is not relevant, so pick any
number. All service registrations are done before the pipeline itself is configured.

Registering middleware

For middleware it is more important where exactly it ends up in the pipeline. This depends mostly on what type of
handler it is, see below at Handlers and pre- and posthandlers.

No matter what handler you have, it probably wants to act on the IVonkContext. Then it is important to be in the
pipeline after the HttpToVonk plugin (order: 1110), since this plugin translates information from the HttpContext to
an IVonkContext and adds the latter as a feature to the HttpContext.Features collection.

Also, you probably want to set your response on the IVonkContext.Response and not directly on the HttpContext.
Response. Then, you will need the VonkToHttp plugin (order: 1120) to translate the IVonkContext back to the
HttpContext.

So in general, the minimum order you need for your plugin will be higher than 1120.

If you want your middleware to act on all the entries in a Batch or Transaction, you need to choose an order higher than
that of the Transaction plugin, which is 3120.

232 Chapter 13. Firely Server Plugins

Firely Server

13.4.3 Order collisions

If two plugins have the same order number, it is not defined in what order the plugins will be put in the pipeline. As
long as those plugins act on disjoint sets of requests that may not be a problem. But it is recommended to avoid this by
checking the orders already in use.

13.4.4 Handlers and pre- and posthandlers

In Firely Server you can define different types of middleware:

• Handler - acts on requests of a certain type, provides the response to it and ends the pipeline.

• Prehandler - acts on requests of certain type(s), may modify the request and sends the request further down the
pipeline.

• Posthandler - lets the request pass by to be handled further down the pipeline. When the response passes on the
way back, it acts on requests or responses of certain type(s), and may modify the response.

This is explained in the session on Plugins from DevDays 2018.

What type of middleware you want your service to be is defined by your use of one of the *Handle... methods from
the VonkAppBuilder extension methods or the IApplicationBuilder extension methods.

Prehandler

A Prehandler needs to act before the actual handler will provide a response. So the order of it must be lower than any
Handler that may handle the requests that this Prehandler is interested in.

So if you want a Prehandler to intercept all create interactions, you should choose an order lower than that of the Create
plugin, which is 4420.

An example of this is the Prevalidation plugin. It needs to validate all resources that get handled by the Create, Update,
Conditional Create and Conditional Update plugins. Of these, Create has the lowest order: 4420. So it must be below
4420. But it also needs to act on each resource in a Batch or Transaction, so it must be higher than these two, which
means higher than 3120. So this is why we have chosen 4320 as order for Prevalidation.

Posthandler

A Posthandler needs to act after the actual handler provided a response. But due to the nature of the processing
pipeline that means it must have an order lower than that of the handler(s) it wants to post-process. The idea is that
the posthandler sits in the pipeline and lets the request pass through. Then one of the handlers provides the response
and sends it back through the pipeline. It will pass through the posthandler again (now ‘backwards’), and then the
posthandler will do its processing.

So if you want a Posthandler to process the responses of all create interactions (e.g. for logging purposes), you should
choose an order lower than that of the Create plugin.

An example for this is the Include plugin. This must act on the response of the Search plugin. So the Include has order
4210, right before Search which has 4220.

13.4. The order of plugins 233

https://www.youtube.com/watch?v=odYaOM19XXc
https://www.devdays.com/events/devdays-europe-2018/

Firely Server

13.5 Important classes and interfaces

If you want to develop a plugin for Firely Server, there are a couple of classes that you will probably interact with.
These classes are listed under Reference - Programming API .

13.6 Template for a plugin

Attention: A complete template for a Firely Server plugin can be found on Github. It covers all details on how to
create a custom operation and how to use Firely Server services internally.

A regular Firely Server plugin acts on the IVonkContext and its IVonkRequest and IVonkResponse properties.

You don’t have to create ASP.NET Core middleware yourself. You just need to create a service acting on IVonkContext.
In the configuration you can specify when the service should be called, and in which position in the pipeline it should
be put. See Interaction Handling for details on that.

You can use the following code as a template for a plugin:

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.DependencyInjection.Extensions;
using System.Threading.Tasks;
using Vonk.Core.Context;
using Vonk.Core.Context.Features;
using Vonk.Core.Pluggability;
using Vonk.Fhir.R3;
using F = Hl7.Fhir.Model;

namespace com.mycompany.vonk.myplugin
{

public class MyPluginService
{
public async Task Act(IVonkContext vonkContext)
{
var (request, args, response) = vonkContext.Parts();
//do something with the request
//write something to the response
response.Payload = new F.Patient{Id = "pat1"}.ToIResource();
response.HttpResult = 200;

}
}

[VonkConfiguration(order: 5000)]
public static class MyPluginConfiguration
{
public static IServiceCollection AddMyPluginServices(IServiceCollection services)
{

services.TryAddScoped<MyPluginService>();
return services;

(continues on next page)

234 Chapter 13. Firely Server Plugins

https://github.com/FirelyTeam/Vonk.Plugin.ExampleOperation

Firely Server

(continued from previous page)

}

public static IApplicationBuilder UseMyPlugin(IApplicationBuilder app)
{

app.OnCustomInteraction(VonkInteraction.system_custom, "myOperation").
→˓HandleAsyncWith<MyPluginService>((svc, context) => svc.Act(context));

return app;
}

}
}

13.7 Returning non-FHIR content from a plugin

Some plugins may need to return content that is not a FHIR Resource. You currently cannot do that through the
IVonkResponse. But there is another way: write directly to the HttpContext.Response. The plugin with order
1110 makes the IVonkContext accessible. That means if you pick an order higher than 1110 you can read the
IVonkContext.Request and .Arguments, and write directly to the HttpContext.Response.

If you write the response yourself, you also need to set the StatusCode and Content-Type on the HttpContext.Response.

Note: If you write to the HttpContext.Response directly, the payload of the IVonkContext.Response is ignored.

The steps to take are:

1. Configure your plugin with an order higher than 1110

2. Write the HttpContext.Response.Body directly

3. Set other properties of the HttpContext.Response (like StatusCode) yourself.

An example of such a plugin would look like this. Note that this is now regular ASP.NET Core Middleware, not a
service like in Template for a plugin.

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using System.Text;
using System.Threading.Tasks;
using Vonk.Core.Context;
using Vonk.Core.Context.Features;
using Vonk.Core.Pluggability;

namespace com.mycompany.vonk.myplugin
{

public class MyPluginMiddleware
{

private readonly RequestDelegate _next;

public MyPluginMiddleware(RequestDelegate next)
{

_next = next;
(continues on next page)

13.7. Returning non-FHIR content from a plugin 235

Firely Server

(continued from previous page)

}

public async Task Invoke(HttpContext httpContext)
{

var vonkContext = httpContext.Vonk();
var (request, args, _) = vonkContext.Parts();
if (VonkInteraction.system_custom.HasFlag(request.Interaction))
{

//write something directly to the HttpContext.Response. Now you also␣
→˓have to set the Content-Type header and the Content-Length yourself.

var message = "This is a response that is not a FHIR resource";
string contentLength = Encoding.UTF8.GetByteCount(message).ToString();

httpContext.Response.Headers.Add("Content-Type", "text/plain;␣
→˓charset=utf-8");

httpContext.Response.Headers.Add("Content-Length", contentLength);
httpContext.Response.StatusCode = 200;
await httpContext.Response.WriteAsync("This is a response that is not a␣

→˓FHIR resource");
}
else
{

await _next(httpContext);
}

}
}

[VonkConfiguration(order: 1115)] //note the order: higher than 1110
public static class MyPluginConfiguration
{

public static IServiceCollection AddMyPluginServices(IServiceCollection services)
{

//No services to register in this example, but if you create services to do␣
→˓the actual work - register them here.

return services;
}

public static IApplicationBuilder UseMyPlugin(IApplicationBuilder app)
{

app.UseMiddleware<MyPluginMiddleware>(); //You cannot use the extension␣
→˓methods that allow you to filter the requests.

return app;
}

}
}

236 Chapter 13. Firely Server Plugins

Firely Server

13.7.1 Custom authorization plugin

This feature can also be used to implement custom authorization. You can find a template for that in this gist.

If you just return a statuscode, you could use the regular IVonkContext.Response. If you want to return e.g. a custom
json object, you should use the method described above. Do not forget to set the Content-Type (to application/json
for a custom json object).

For more information about access control in plugins and facades, see Access Control in Plugins and Facades.

13.8 Firely Server Plugin example - Create a new landing page

As a minimal example of how to use Firely Server Plugins we will show you how to create a library with your own
landing page, and use it to replace the landing page that is provided by Firely Server. The landing page is the webpage
you see when you access Firely Server’s endpoint with a browser. By default it looks like this:

13.8.1 Create a new ASP.NET Core web application

In Visual Studio create a new project of type ASP .NET Core Web Application:

13.8. Firely Server Plugin example - Create a new landing page 237

http://bit.ly/VonkAuthorizationMiddleware

Firely Server

Press OK to continue.

238 Chapter 13. Firely Server Plugins

Firely Server

Choose a name for your project and solution. Click Create to continue.

Choose ASP.NET Core 3.1 and select Web Application (Model-View-Controller). Press OK.

13.8.2 Add Firely Server Package

Add Vonk.Core via the Nuget Package Manager:

This will give you access to all the core components of Firely Server, including the Vonk.Core.Pluggability.

13.8. Firely Server Plugin example - Create a new landing page 239

Firely Server

VonkConfiguration attribute.

13.8.3 Adjust project file

Add wwwroot and Views as an Embedded resource in the project file (that is neccessary for Firely Server to pick them
up from a library dll). To edit the project file, right click on the project file and select Edit <projectname>.cproj:

<ItemGroup>
<EmbeddedResource Include="wwwroot***" />
<EmbeddedResource Include="Views**" />

</ItemGroup>

The project file will look like this:

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>
<TargetFramework>netcoreapp3.1</TargetFramework>

</PropertyGroup>

<ItemGroup>
<PackageReference Include="Vonk.Core" Version="3.4.0" />

</ItemGroup>

<ItemGroup>
<EmbeddedResource Include="wwwroot***" />
<EmbeddedResource Include="Views**" />

</ItemGroup>

</Project>

Save the project file.

13.8.4 Create the configuration class

Next, add a new file for the configuration class, as described in Configuration classes. Annotate it with
[VonkConfiguration(order: 802)]. In the example below the class is named UIConfiguration. Then add the
static methods as prescribed:

public static IServiceCollection AddUIServices(IServiceCollection services)
{
var thisAssembly = typeof(UIConfiguration).GetTypeInfo().Assembly;
services

.AddMvc(option => option.EnableEndpointRouting = false)

.AddRazorRuntimeCompilation()

.AddApplicationPart(thisAssembly)

.AddControllersAsServices();

var embeddedFileProvider = new EmbeddedFileProvider(
thisAssembly,
thisAssembly.GetName().Name

);
(continues on next page)

240 Chapter 13. Firely Server Plugins

Firely Server

(continued from previous page)

services.Configure<MvcRazorRuntimeCompilationOptions>(options =>
{

options.FileProviders.Clear();
options.FileProviders.Add(embeddedFileProvider);

});
return services;

}

public static IApplicationBuilder UseUI(IApplicationBuilder app)
{
var thisAssembly = typeof(UIConfiguration).GetTypeInfo().Assembly;
var embeddedStaticFileProvider = new EmbeddedFileProvider(

thisAssembly,
thisAssembly.GetName().Name + ".wwwroot"

);

app.UseStaticFiles(new StaticFileOptions() { FileProvider =␣
→˓embeddedStaticFileProvider });

return app.MapWhen(ctx => ctx.IsBrowserRequest(), ab => ab.UseMvcWithDefaultRoute());
}

The source file will then look like this:

13.8. Firely Server Plugin example - Create a new landing page 241

Firely Server

13.8.5 Deploy and Configure

Build this project in Release mode and copy the produced dll (located in <src>\bin\Release\netcoreapp3.1) to the plugin
directory of Firely Server, as configured in the PipelineOptions:PluginDirectory.

Go to the Firely Server settings of Firely Server, and replace the namespace of the landingpage (Vonk.UI.Demo) in the
include of the PipelineOptions:

"PipelineOptions": {
"PluginDirectory": "./plugins",
"Branches": [

{
"Path": "/",
"Include": [

"Vonk.Core",
"Vonk.Fhir.R3",

(continues on next page)

242 Chapter 13. Firely Server Plugins

Firely Server

(continued from previous page)

"Vonk.Fhir.R4",
//"Vonk.Fhir.R5"
"Vonk.Repository.SqlVonkConfiguration",
"Vonk.Repository.SqliteVonkConfiguration",
"Vonk.Repository.MongoDbVonkConfiguration",
"Vonk.Repository.MemoryVonkConfiguration",
"Vonk.Subscriptions",
"Vonk.Smart",
"WebApplication2" //This is the adjustment you make.
"Vonk.Plugin.DocumentOperation.DocumentOperationConfiguration",
"Vonk.Plugin.ConvertOperation.ConvertOperationConfiguration",
"Vonk.Plugin.BinaryWrapper",
"Vonk.Plugin.MappingToStructureMap.MappingToStructureMapConfiguration",
"Vonk.Plugin.TransformOperation.TransformOperationConfiguration",
"Vonk.Plugin.Audit"

],
"Exclude": [

"Vonk.Subscriptions.Administration"
]

},
{

"Path": "/administration",
"Include": [

"Vonk.Fhir.R3",
"Vonk.Fhir.R4",
//"Vonk.Fhir.R5"
"Vonk.Repository.SqlAdministrationVonkConfiguration",
"Vonk.Repository.SqliteAdministrationVonkConfiguration",
"Vonk.Repository.MongoDbAdministrationVonkConfiguration",
"Vonk.Repository.MemoryAdministrationVonkConfiguration",
"Vonk.Subscriptions.Administration",
"Vonk.Plugins.Terminology",
"Vonk.Plugin.Audit",
"Vonk.Administration"

],
"Exclude": [

"Vonk.Core.Operations",
"Vonk.Core.Licensing.LicenseRequestJobConfiguration"

]
}

]
}

13.8. Firely Server Plugin example - Create a new landing page 243

Firely Server

13.8.6 Run and admire

Now run Firely Server from the commandline or Powershell window with

> dotnet .\Vonk.Server.dll

Open a browser and visit the homepage of Firely Server (http://localhost:4080) to admire your own landingpage.

13.9 Firely Server Plugin example - $document operation

As a more elaborate example we implemented the $document operation from the FHIR Specification as a plugin.

You can find the code on GitHub.

13.10 BinaryWrapper plugin

13.10.1 Description

Enables you to send binary content to Firely Server and have it stored as a Binary resource, as well as the reverse: get a
Binary resource and have it returned in its original binary format. The contents are Base64 encoded and stored inside
the resource in the Firely Server database. Therefore this plugin is only suitable for small binary files.

Sending binary content example request:

POST <base-url>/Binary
Content-Type = application/pdf
Accept = application/fhir+json; fhirVersion=4.0
Body: enclose a file with the actual contents

• This can also be done with a PUT: PUT <base-url>/Binary/example

• The Content-Type must be the mediatype of the actual contents. It will only be accepted by Firely Server if it is
one of the mediatypes listed in the RestrictToMimeTypes below.

• The Accept header can be either a fhir mediatype, with any of the supported FHIR versions. You could also set
it equal to the Content-Type in which case you will be returned the same contents again.

Getting binary content example request:

GET <base-url>/Binary/example
Accept = application/pdf; fhirVersion=4.0

• The Accept header should match the mediatype of the actual contents. If you don’t know the mediatype, you
could request the binary resource in FHIR format first and examine its contentType element.

244 Chapter 13. Firely Server Plugins

http://localhost:4080
https://github.com/FirelyTeam/vonk.plugin.documentoperation

Firely Server

13.10.2 Configuration

"Vonk.Plugin.BinaryWrapper":{
"RestrictToMimeTypes": ["application/pdf", "text/plain", "image/png", "image/jpeg"]

},
"SizeLimits": {

"MaxResourceSize": "1MiB", // b/kB/KiB/Mb/MiB, no spaces
},
"PipelineOptions": {

"Branches": [
{

"Path": "/",
"Include": [

...
"Vonk.Plugin.BinaryWrapper"

]
},
...

]
}

• RestrictToMimeTypes protects Firely Server from arbitrary content.

• This plugin honours the Firely Server setting for maximum resource size. This protects Firely Server from binary
contents that are too large to store in the database.

• The namespace Vonk.Plugin.BinaryWrapper configures both encoding and decoding of binary contents. You
can configure them separately as well:

"PipelineOptions": {
"Branches": [

{
"Path": "/",
"Include": [

...
"Vonk.Plugin.BinaryWrapper.BinaryEncodeConfiguration",
"Vonk.Plugin.BinaryWrapper.BinaryDecodeConfiguration"

]
},
...

]
}

13.10.3 Release notes

Version 0.3.0

• Built against Firely Server (Vonk) 3.2.0

• Compatible with Firely Server (Vonk) 3.2.0, 3.2.1, 3.3.0

• Introduces the decoding of Binary resources, so you can GET a Binary resource in its original binary format.

13.10. BinaryWrapper plugin 245

Firely Server

Version 0.2.0

• Build against Firely Server (Vonk) 3.0.0

• Compatible with Firely Server (Vonk) 3.0.0

• Functionally equivalent to version 0.1.0

Version 0.1.0

• Build against Firely Server (Vonk) 2.1.0

• Compatible with Firely Server (Vonk) 2.1.0

• Introduces the encoding of Binary resources, so you can POST binary contents and have it stored as a Binary
resource.

13.11 Convert plugin

13.11.1 Description

Enables you to convert between json and xml representation of a resource using the $convert operation. It can not
convert between different FHIR versions.

Convert example request:

POST <base-url>/$convert
Content-Type = application/fhir+json; fhirVersion=4.0
Accept = application/fhir+xml; fhirVersion=4.0
Body: a resource in JSON format

• This can also be done reversely, with a body in XML format

13.11.2 Configuration

"PipelineOptions": {
"Branches": [

{
"Path": "/",
"Include": [

...
"Vonk.Plugin.ConvertOperation"

]
},
...

]
}

246 Chapter 13. Firely Server Plugins

Firely Server

13.11.3 Release notes

Version 0.2.0

• Build against Firely Server (Vonk) 3.2.0

• Compatible with Firely Server (Vonk) 3.2.0, 3.3.0

• Functionally equivalent to version 0.1.0

Version 0.1.0

• Build against Firely Server (Vonk) 3.0.0

• Compatible with Firely Server (Vonk) 3.0.0, 3.1.0

• Introduces the implementation of $convert for conversion between json and xml.

13.11. Convert plugin 247

Firely Server

248 Chapter 13. Firely Server Plugins

CHAPTER

FOURTEEN

FIRELY SERVER FACADE

Firely Server Facade is a means to use the Firely Server implementation of the FHIR RESTful API on top of an existing
repository. This repository may be a relational database, a nosql database or even another web api.

This chapter details the two options for setting up a Firely Server Facade, and provides you with an exercise to get some
hands-on experience with a Facade solution.

14.1 Facade setup configuration

To set up a Firely Server Facade, you will need to create a library with your own implementation of the interfaces for
reading and/or writing FHIR resources and provide that as a plugin to Firely Server.

14.1.1 Provide a plugin to Firely Server

This leverages the capabilities of Firely Server Plugins. With this setup you:

• create a new ASP.NET Core library

• include Firely Server NuGet packages

• implement your own repository backend to interface with your data store (can be SQL server or any other medium)

• configure the PipelineOptions to use your library instead of Firely Server’s own repository implementation

• configure the PipelineOptions to limit the plugins to those that are supported by your repository implementation.

The benefit of using this approach is that you automatically get to use all of Firely Server’s configuration, logging,
Application Insights integration, the Administration API , etc. described in the other sections of this documentation.

The exercise below uses this setup.

Note: Although we take care to try and avoid breaking changes, please be prepared to retest and update your plugins
when you choose to update Firely Server.

249

Firely Server

14.2 Exercise: Build your first Facade

The best way to get experience in developing a Firely Server Facade is by following the exercise - build your first
facade. This exercise builds a facade on a simple relational database, by creating a plugin and inserting that into the
Firely Server pipeline.

Using a Firely Server Facade allows you to open up legacy systems to the FHIR ecosystem, or add a whole new database
backend.

In this exercise you will use Firely Server Facade libraries to build an ASP.NET Core library implementing a FHIR
RESTful API on top of an existing database.

The existing database contains two simple tables ‘Patient’ and ‘BloodPressure’. In the exercise we refer to it as the
‘ViSi’ system, short for ‘VitalSigns’.

14.2.1 Git repository Vonk.Facade.Starter

This repository contains the completed exercise. You can find the repository at Github. Of course we do recommend
to try and do the exercise yourself first, before looking at the final result.

14.3 Prerequisites and Preparations

• Experience with programming ASP.NET (Core) libraries.

• Basic understanding of the FHIR RESTful API and FHIR servers.

• Visual Studio 2017 or newer

1. get a free community edition at https://www.visualstudio.com/downloads/

2. be sure to select the components for C# ASP.NET Core web development

• .NET Core 2.0 SDK, from https://www.microsoft.com/net/download/windows

1. this is probably installed along with the latest Visual Studio, but needed if your VS is not up-to-date.

• SQL Server 2012 or newer:

1. get a free developer or express edition at https://www.microsoft.com/en-us/sql-server/
sql-server-downloads

2. add SQL Server Management Studio from https://docs.microsoft.com/en-us/sql/ssms/
download-sql-server-management-studio-ssms

• Postman, Fiddler or a similar tool to issue http requests and inspect the responses.

14.3.1 Installing the Firely Server

Before you can start implementing your facade, you need to have the Firely Server installed. See Getting Started on
how to download the binaries and license key.

250 Chapter 14. Firely Server Facade

https://github.com/FirelyTeam/Vonk.Facade.Starter
http://hl7.org/fhir/http.html
https://www.visualstudio.com/downloads/
https://www.microsoft.com/net/download/windows
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Firely Server

14.3.2 Preparing the database

Download the CreateDatabase script, and create a SQL Server database with it.

It creates a database ‘ViSi’ with two tables: Patient and BloodPressure. You can familiarize yourself with the table
structure and contents to prepare for the mapping to FHIR later on.

Proceed to the next step to start your facade project.

14.4 Starting your project

In this step, you will create and set up your project to start building the facade.

14.4.1 Create new project

1. Open Visual Studio 2017

2. File | New | Project

• Choose Class Library (.NET Core)

• Project name and directory at your liking; Click OK

14.4.2 Add Firely Server Packages

1. Tools > NuGet Package Manager > Package Manager Console

• Run Install-Package Vonk.Core

• Run Install-Package Vonk.Fhir.R3 (if you want to use R3)

• Run Install-Package Vonk.Fhir.R4 (if you want to use R4)

Note: You can install the latest beta release of the Firely Server packages by adding -IncludePrerelease to the
install command.

14.5 Mapping the database

In this step you will start mapping the existing database model to FHIR resources.

14.5.1 Reverse engineer the database model

To use EF Core, install the package for the database provider(s) you want to target. This walkthrough uses SQL Server.
For a list of available providers see Database Providers.

• Tools NuGet Package Manager Package Manager Console

• Run Install-Package Microsoft.EntityFrameworkCore.SqlServer

We will be using some Entity Framework Tools to create a model from the database. So we will install the tools package
as well:

14.4. Starting your project 251

https://docs.microsoft.com/en-us/ef/core/

Firely Server

• Run Install-Package Microsoft.EntityFrameworkCore.Tools

Note: The current version of Firely Server uses the latest EF Core libraries. If you are developing for an older
Firely Server version, please check the version of Microsoft.EntityFrameworkCore.SqlServer.dll in your
Firely Server distribution folder. Add -Version <version> to the commands above to use the same version in your
Facade implementation.

Now it’s time to create the EF model based on your existing database.

• Tools NuGet Package Manager Package Manager Console

• Run the following command to create a model from the existing database. Adjust the Data Source to your instance
of SQL Server. If you receive an error stating The term ‘Scaffold-DbContext’ is not recognized as the name of
a cmdlet, then close and reopen Visual Studio.:

Scaffold-DbContext "MultipleActiveResultSets=true;Integrated Security=SSPI;Persist␣
→˓Security Info=False;Initial Catalog=ViSi;Data Source=localhost" Microsoft.
→˓EntityFrameworkCore.SqlServer -OutputDir Models
//For localdb: Scaffold-DbContext "Server=(localdb)\mssqllocaldb;Database=ViSi;
→˓Trusted_Connection=True;" Microsoft.EntityFrameworkCore.SqlServer -OutputDir␣
→˓Models
//For SQLEXPRESS: Scaffold-DBContext "Data Source=(local)\SQLEXPRESS;Initial␣
→˓Catalog=ViSi;Integrated Security=True" Microsoft.EntityFrameworkCore.SqlServer -
→˓OutputDir Models

You can also generate the scaffolding using the EF CLI tools which are crossplatform:

dotnet ef dbcontext scaffold "User ID=SA;Password=<enter your password here>;
→˓MultipleActiveResultSets=true;Server=tcp:.;Connect Timeout=5;Integrated Security=false;
→˓Persist Security Info=False;Initial Catalog=ViSi;Data Source=localhost" Microsoft.
→˓EntityFrameworkCore.SqlServer --output-dir Models

The reverse engineer process creates entity classes (Patient.cs & BloodPressure.cs) and a derived context (ViSiCon-
text.cs) based on the schema of the existing database.

The entity classes are simple C# objects that represent the data you will be querying and saving. Later on you will use
these classes to define your queries on and to map the resources from.

14.5.2 Clean up generated code

• To avoid naming confusion with the FHIR Resourcetype Patient, rename both files and classes:

– Patient ViSiPatient

– BloodPressure ViSiBloodPressure

In ViSiContext.cs, ensure that the EF objects mapping our class to the database table are correct and without
prefixes (since it’s just our local classes that have them):

public virtual DbSet<ViSiBloodPressure> BloodPressure { get; set; }
public virtual DbSet<ViSiPatient> Patient { get; set; }

• The Scaffold command puts your connectionstring in the ViSiContext class. That is not very configurable. Later
in the exercise, we will add it as ‘DbOptions’ to the appsettings.instance.json file in 3. Configure your Firely
Server Facade.

252 Chapter 14. Firely Server Facade

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet

Firely Server

– Rename the default Class1 class to DbOptions, and add this to interpret the setting:

public class DbOptions
{

public string ConnectionString { get; set; }
}

– Remove the empty constructors from the ViSiContext class

– Use the options in your ViSiContext class, by adding:

private readonly IOptions<DbOptions> _dbOptionsAccessor;

public ViSiContext(IOptions<DbOptions> dbOptionsAccessor)
{

_dbOptionsAccessor = dbOptionsAccessor;
}

– Change the existing OnConfiguring method that contains the connectionstring to:

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{

if (!optionsBuilder.IsConfigured)
{

optionsBuilder.UseSqlServer(_dbOptionsAccessor.Value.ConnectionString);
}

}

14.5.3 Create your first mapping

1. Add a new public class ResourceMapper to the project

2. Add usings for Vonk.Core.Common, for Hl7.Fhir.Model, for Hl7.Fhir.Support and for <your
project>.Models

3. Add a method to the class public IResource MapPatient(ViSiPatient source)

4. In this method, put code to create a FHIR Patient object, and fill its elements with data from the ViSiPatient:

var patient = new Patient
{

Id = source.Id.ToString(),
BirthDate = source.DateOfBirth.ToFhirDate()

};
patient.Identifier.Add(new Identifier("http://mycompany.org/patientnumber",

source.PatientNumber));
// etc.

For more examples of filling the elements, see the FHIR API documentation: FHIR-model.

5. Then return the created Patient object as an IResource with patient.ToIResource().

IResource is an abstraction from actual Resource objects as they are known to specific versions of the
Hl7.Fhir.Net API. See IResource.

14.5. Mapping the database 253

https://docs.fire.ly/projects/Firely-NET-SDK/model.html

Firely Server

14.6 Enable Search

Enabling search involves two major steps:

1. Creating a query to the database based on the bits and pieces in the search url

2. Getting a count and actual data from the database with that query, and map it to a SearchResult

The next paragraphs will walk you through these steps.

14.6.1 1. Create a query

Firely Server Facade is meant to be used across all kinds of database paradigms and schemas. Or even against underlying
web services or stored procedures. This means Firely Server cannot prescribe the way your query should be expressed.
After all, it could be an http call to a webservice, or a json command to MongoDB.

In our case we will build a LINQ query against our ViSi model, that is translated by Entity Framework to a SQL query.
Because this is a quite common case, Firely Server provides a basis for it in the package Vonk.Facade.Relational.

• Go back to the NuGet Package Manager Console and run Install-Package Vonk.Facade.Relational

Note: If you did this previously for the other Firely Server packages, you can install the latest beta release of this
package as well by adding -IncludePrerelease to the install command.

Adding classes for the query

You usually create a query class per ResourceType. The Query object is used to capture the elements of the search that
are provided to the QueryFactory.

In this exercise we start with resource type Patient, and will create a PatientQuery and PatientQueryFactory
class. Because PatientQuery has no specific content of its own, we will include both in one file.

• Add a new class PatientQueryFactory to the root of the project

• Add using statements for Vonk.Facade.Relational, Microsoft.EntityFrameworkCore, and <your
project>.Models

• Above the actual PatientQueryFactory class insert the PatientQuery class:

public class PatientQuery: RelationalQuery<ViSiPatient>
{}

• Now flesh out the PatientQueryFactory:

public class PatientQueryFactory: RelationalQueryFactory<ViSiPatient, PatientQuery>
{}

254 Chapter 14. Firely Server Facade

Firely Server

Adding a constructor

You have to provide a constructor for the factory class. With this you tell Firely Server for which resource type this
QueryFactory is valid. The DbContext is used for retrieving DbSets for related entities, as we will see later:

public PatientQueryFactory(DbContext onContext) : base("Patient", onContext) { }

Deciding on a FHIR version

You need to explicitly tell Firely Server for which FHIR version(s) you wish to return resources. If you don’t override
EntryInformationModel, any search will fail with a 501 Not Implemented. The following override will allow
searches for any possible FHIR version to be handled by your facade:

public override PatientQuery EntryInformationModel(string informationModel)
{

return default(PatientQuery);
}

If you wish to implement search only for a single FHIR version or for a limited set of versions you can override the
method like this:

public override PatientQuery EntryInformationModel(string informationModel)
{

if (informationModel == VonkConstants.Model.FhirR4)
{

return default(PatientQuery);
}

throw new NotImplementedException($"FHIR version {informationModel} is not supported
→˓");
}

Handling the search request

Each of the searchparameters in the search request triggers a call to the Filter method. This method takes a
parameterName and IFilterValue as its arguments.

The parameterName is the searchparameter as it was used in the search url. This name corresponds with the code field
in a SearchParameter resource. The IFilterValue value is one of 10 possible implementations, one for each type
of SearchParameter. See IFilterValue implementations for a short description of these possibilities.

By default the Filter method dispatches the call to a suitable overload of AddValueFilter, based on the actual type
of the value parameter. It is up to you to override the ones you support any parameters for.

• Override the method PatientQuery AddValueFilter(string parameterName, TokenValue value) in
the PatientQueryFactory class to implement support for the _id parameter, which is a token type parameter.

The _id parameter must be matched against the ViSiPatient.Id property. So we have to:

– Parse the Token.Code to an integer (ViSiPatient.Id is of type int)

– Create a query with a predicate on ViSiPatient.Id.

This is how:

14.6. Enable Search 255

https://www.hl7.org/fhir/searchparameter.html
http://hl7.org/fhir/search.html#ptypes
http://hl7.org/fhir/search.html#ptypes

Firely Server

if (parameterName == "_id")
{

if (!int.TryParse(value.Code, out int patientId))
{

throw new ArgumentException("Patient Id must be an integer value.");
}
else
{

return PredicateQuery(vp => vp.Id == patientId);
}

}
return base.AddValueFilter(parameterName, value);

Note: The ArgumentException in this code will automatically result in setting the argument status to error, so
the Firely Server will send a response with an error code and OperationOutcome. See the information about the
IArgumentCollection and IArgument classes in IVonkContext.

That’s it for now, we will add support for another parameter later.

IFilterValue implementations

There are 10 possible implementations you can use as value for the IFilterValue parameter in the Query. The first
7 are the general search parameter types: StringValue, DateTimeValue, TokenValue, NumberValue, QuantityValue,
UriValue and ReferenceValue.

Besides that there are two special values for chaining and reverse chaining: ReferenceToValue and ReferenceFrom-
Value.

And finally there is a special value for when Firely Server does not know the SearchParameter and hence not the type
of it: RawValue.

This is the second step for enabling search.

14.7 2. Get the data and map to FHIR

Getting the data happens in the implementation of the ISearchRepository. It has only one method, Search. The
Vonk.Facade.Relational package has an abstract implementation of it that you can use as a starting point. This imple-
mentation assumes that you can support searching for exactly one ResourceType at a time. The gist of the implemen-
tation is to switch the querying based on the ResourceType. The querying itself then looks pretty much the same for
every type of resource.

• Add the new class ViSiRepository to the root of the project:

public class ViSiRepository : SearchRepository

• You have to provide a constructor that gets a QueryContext. We’ll get to that later. Apart from that you will need
your DbContext (ViSiContext) to query on, and the ResourceMapper to perform the mapping of the results. So
put all of that in the constructor:

private readonly ViSiContext _visiContext;
private readonly ResourceMapper _resourceMapper;

(continues on next page)

256 Chapter 14. Firely Server Facade

http://hl7.org/fhir/search.html#ptypes

Firely Server

(continued from previous page)

public ViSiRepository(QueryContext queryContext, ViSiContext visiContext,␣
→˓ResourceMapper resourceMapper) : base(queryContext)
{

_visiContext = visiContext;
_resourceMapper = resourceMapper;

}

• You will have to implement the abstract method Task<SearchResult> Search(string resourceType,
IArgumentCollection arguments, SearchOptions options).

– First, let’s inspect the parameters:

resourceType
The ResourceType that is being searched for, e.g. Patient in
<firely-server-endpoint>/Patient?...

arguments
All the arguments provided in the search, whether they come from the path (like ‘Pa-
tient’), the querystring (after the ‘?’), the headers or the body. Usually you don’t have
to inspect these yourself.

options
A few hints on how the query should be executed: are deleted or contained resources
allowed etc. Usually you just pass these on as well.

– The pattern of the implementation is:

1. switch on the resourceType

2. dispatch to a method for querying for that resourceType

Naturally we do this async, since in a web application you should never block a thread while waiting for
the database.

– To implement this, add this to the class:

protected override async Task<SearchResult> Search(string resourceType,␣
→˓IArgumentCollection arguments, SearchOptions options)
{

switch (resourceType)
{

case "Patient":
return await SearchPatient(arguments, options);

default:
throw new NotImplementedException($"ResourceType {resourceType} is␣

→˓not supported.");
}

}

• Now we moved the problem to SearchPatient, so this method needs to be implemented. The pattern here is:

1. Create a query - in this case, a PatientQuery via PatientQueryFactory.

2. Execute the query against the DbContext (our _visiContext) to get a count of matches.

3. Execute the query against the DbContext to get the current page of results.

4. Map the results using the _resourceMapper

14.7. 2. Get the data and map to FHIR 257

Firely Server

The implementation of this looks like:

private async Task<SearchResult> SearchPatient(IArgumentCollection␣
→˓arguments, SearchOptions options)
{

var query = _queryContext.CreateQuery(new PatientQueryFactory(_
→˓visiContext), arguments, options);

var count = await query.ExecuteCount(_visiContext);
var patientResources = new List<IResource>();

if (count > 0)
{

var visiPatients = await query.Execute(_visiContext).ToListAsync();

foreach (var visiPatient in visiPatients)
{

patientResources.Add(_resourceMapper.MapPatient(visiPatient));
}

}
return new SearchResult(patientResources, query.GetPageSize(), count);

}

What happens behind the scenes is that the QueryBuilderContext creates a QueryBuilder that analyzes all the arguments
and options, and translates that into calls into your PatientQueryFactory. This pattern offers maximum assistance in
processing the search, but also gives you full control over the raw arguments in case you need that for anything. Any
argument that is reported as in Error, or not handled will automatically show up in the OperationOutcome of the Firely
Server response.

In the next paragraph you will configure your Firely Server to use your Facade, and can – finally – try out some searches.
The paragraph after that expands the project to support ViSiBloodPressure Observations, and details how to add custom
search parameters.

Note: Your implementation of ISearchRepository may have other dependencies than the ones listed above, but it
cannot be dependent upon IStructureDefinitionSummaryProvider. That causes a circular dependency, and will
have you wait for a response from the server indefinitely. This means that in the implementation you can work with
POCO’s (as is done in this tutorial) or with ‘raw’ SourceNode instances, but not with ITypedElement (for the latter
two see the Firely .NET SDK).

14.8 Finalizing search

In the previous steps you have created search support for the _id parameter on a Patient resource type. In order to test
if your Facade implementation works correctly, you will need to perform a couple of steps:

1. Create a configuration class for the ASP .Net Core pipeline

2. Plug the Facade into the Firely Server

3. Configure the Firely Server to use your repository

258 Chapter 14. Firely Server Facade

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-2.2

Firely Server

14.8.1 1. Add configuration class

To add your repository service to the Firely Server pipeline, you will need to add a configuration class that sets the
order of inclusion, and adds to the services. For background information, see Configuration classes.

• Add a static class to your project called ViSiConfiguration

• Add the following code to it:

[VonkConfiguration(order: 210)]
public static class ViSiConfiguration
{

public static IServiceCollection AddViSiServices(this IServiceCollection␣
→˓services, IConfiguration configuration)

{
services.AddDbContext<ViSiContext>();
services.TryAddSingleton<ResourceMapper>();
services.TryAddScoped<ISearchRepository, ViSiRepository>();

services.Configure<DbOptions>(configuration.GetSection(nameof(DbOptions)));
return services;

}
}

Note: As of Firely Server version 4.4.0, your Facade should not have an order greater than or equal to 211. The reason
for this is that upon configuring the administration database, Firely Server checks whether an ISearchRepository is
registered. The earliest of these configurations is at order 211.

Note: Should you need to register any other classes or interface, please see Register a service in your plugin for more
background.

14.8.2 2. Create your Facade plugin

• First, build your project

• Find the resulting dll and copy that to the plugins folder in the working directory of your Firely Server

Note: If your Firely Server working directory does not contain a plugins folder yet, you can create one. Within it, you
can create subfolders, which can be useful if you work with multiple plugins.

You can also configure the name and location of this folder with the PipelineOptions.PluginDirectory setting
in the appsettings file.

14.8. Finalizing search 259

Firely Server

14.8.3 3. Configure your Firely Server Facade

• Create an appsettings.instance.json file in your Firely Server working directory.

Tip: See Firely Server settings for more information about the hierarchy of the appsettings(.*).json files
and the settings that can be configured.

• Add a setting for the connectionstring to the appsettings.instance.json file:

"DbOptions" : { "ConnectionString" : "<paste the connection string to your ViSi␣
→˓database here>" },

• Add the SupportedInteractions section. You can look at Enable or disable interactions to check what
this section should contain. For now you only need "WholeSystemInteractions": "capabilities",
"InstanceLevelInteractions": "read" and "TypeLevelInteractions": "search":

"SupportedInteractions": {
"InstanceLevelInteractions": "read",
"TypeLevelInteractions": "search",
"WholeSystemInteractions": "capabilities"

},

• Add the SupportedModel section to indicate which resource types and search parameters you support in your
Facade implementation:

"SupportedModel": {
"RestrictToResources": ["Patient"],
"RestrictToSearchParameters": ["Resource._id", "StructureDefinition.url"]

},

• You will need to add your repository to the Firely Server pipeline, and remove the existing repository implemen-
tations. The standard settings for the pipeline configuration can be found in the appsettings.default.json file, or
see Configure the pipeline for an example.

– Copy the whole PipelineOptions section to your appsettings.instance.json file (both / and /
administration)

– To the Include part of the branch with "Path":"/" add your namespace, and remove the
Vonk.Repository.* lines from it:

{
"Path": "/",
"Include": [
"Vonk.Core",
"Vonk.Fhir.R3",
"Vonk.Subscriptions",
"Vonk.Smart",
"Vonk.UI.Demo",
"ViSiProject" // fill in (a prefix of) the namespace of your project here

]
},

– Remove the PipelineOptions from appsettings.default.json, because of the warning mentioned on the Hier-
archy of settings.

260 Chapter 14. Firely Server Facade

Firely Server

14.8.4 Test your work

Proceed to the next section to test your Facade, and for some helpful tips about debugging your code.

14.9 Debugging the Facade

• Start your Firely Server

Note: If this is your first startup of Firely Server, it will take a while to load in all of the specification files.

• You can inspect the console log to see if the pipeline is configured to include your repository. See Detailed
logging of loading plugins for more details.

• To test your Facade, open Postman, or Fiddler, or use curl to request GET http://localhost:4080/metadata

The resulting CapabilityStatement should list only the Patient resource type in its .rest.resource field, and – among
others – the _id search parameter in the .rest.searchParam field.

• Now you can test that searching patients by _id works: GET http://localhost:4080/Patient?_id=1
Requesting the resource ‘normally’ should automatically work as well: GET http://localhost:4080/
Patient/1

Important: If it works, congratulations! You now have a Firely Server Facade running!

14.9.1 Testing during implementation

Follow these steps if you want to test your work during the implementation phase without having to build, copy and
start Firely Server each time, or with the ability to set break points in your code and debugging it:

• In the project properties, click on the Build tab.

• Set the Output path to your Firely Server plugins directory.

• Go to the Debug tab and set Launch to Executable.

• Point the Executable field to your dotnet.exe.

• Set the Application arguments to <your-Firely-Server-working-directory>/Firely.Server.
dll.

• Set the Working directory to your Firely Server working directory.

Now, whenever you click to start debugging, Firely Server will start from your project and your project dll will be
automatically built to the Firely Server plugins directory.

14.9. Debugging the Facade 261

Firely Server

Next part of the exercise

You can proceed to the next section to add support for Observations as well.

14.10 Finalizing your project

14.10.1 Add support for the ViSiBloodPressure Observations

First, follow similar steps as above to support ViSiBloodPressure:

1. Add a mapping method in the ResourceMapper class to map from a ViSiBloodPressure to a FHIR Observation
resource, and return that as an IResource.

2. Create a BloodPressureQuery query class.

3. Add a BPQueryFactory extending RelationalQueryFactory<ViSiBloodPressure,
BloodPressureQuery>.

4. Implement support for the _id parameter by overriding public virtual BloodPressureQuery
AddValueFilter(string parameterName, TokenValue value).

5. Add the Observation type to the SupportedModel section in Firely Server’s appsettings.instance.json:
"RestrictToResources": ["Patient", "Observation"]

When you have completed these steps, build your project again and copy the dll to your Firely Server plugins folder.
After you (re)start Firely Server, you will be able to request an Observation through your Facade: GET http://
localhost:4080/Observation?_id=1 or GET http://localhost:4080/Observation/1.

Since you do not always want to request Observations by their technical id, but more often might want to request
Observations from a specific patient, the next part will describe implementing support that. The Patient resource is
referenced by the Observation in its subject field. The corresponding search parameter is either subject or patient.

Add support for chaining

To add support for searching on Observation?subject:Patient._id we need to override the AddValueFilter
overload receiving a ReferenceToValue parameter in the query factory for BloodPressure (BPQueryFactory).

The ReferenceToValue type contains the possible Targets for the chain search parameter as parsed from the query
string. We are currently interested only on the Patient type so we can restrict the implementation to that target.
The ReferenceToValue type also has an extension method CreateQuery that expects an implementation of the
RelationalQueryFactory of the referenced target. This will generate the query to obtain the resources referenced
by it.

Searching on chained parameters involves the following steps:

1. Retrieve all patient ids based on the chained parameter. You can use the ReferenceToValue.CreateQuery
extension method to get the query and run the query with its Execute method.

2. Create a PredicateQuery with the condition that ViSiBloodPressure.PatientId is included in the ids
retrieved at the previous step.

The final code should look similar to this:

public override BloodPressureQuery AddValueFilter(string parameterName,␣
→˓ReferenceToValue value)
{

if (parameterName == "subject" && value.Targets.Contains("Patient"))
(continues on next page)

262 Chapter 14. Firely Server Facade

Firely Server

(continued from previous page)

{
var patientQuery = value.CreateQuery(new␣

→˓PatientQueryFactory(OnContext));
var patIds = patientQuery.Execute(OnContext).Select(p => p.Id);

return PredicateQuery(bp => patIds.Contains(bp.PatientId));
}
return base.AddValueFilter(parameterName, value);

}

Note: patIds is of type IQueryable, so the resulting BloodPressureQuery will still be executed as a
single command to the database.

3. Add support for the Observation.subject search parameter in the Firely Server appsettings similar to how
we did it for _id.

At this point you should be able to search for GET http://localhost:4080/Observation?subject:Patient.
_id=1

Add support for reverse chaining

Adding support for Patient?_has:Observation:subject:_id=1 is similar. You just need to use the
AddValueFilter overload receiving a ReferenceFromValue.

The ReferenceFromValue type has a Source property filled in with the source of the search parameter. It also has
an extension method CreateQuery that given the corresponding RelationalQueryFactory implementation can
generate the query to obtain resources referenced by the reverse chaining.

So you can add reverse chaining with the following code:

public class PatientQueryFactory
{

public override PatientQuery AddValueFilter(string parameterName, ReferenceFromValue␣
→˓value)

{
if (parameterName == "subject" && value.Source == "Observation")
{

var obsQuery = value.CreateQuery(new BPQueryFactory(OnContext));
var obsIds = obsQuery.Execute(OnContext).Select(bp => bp.PatientId);

return PredicateQuery(p => obsIds.Contains(p.Id));
}
return base.AddValueFilter(parameterName, value);

}
}

Note: The reverse chaining example above uses the Patient resource type as its base, so you will need to implement
this in your PatientQueryFactory.

14.10. Finalizing your project 263

Firely Server

Now you can test if reverse chaining works: http://localhost:4080/Patient?
_has:Observation:subject:_id=1

14.10.2 Get the goodies

At this point you get out of the box support for _include and _revinclude (:iterate as well), and combinations
of search parameters. You can test the following scenarios:

1. _include: http://localhost:4080/Observation?_include=Observation:subject

2. _revinclude: http://localhost:4080/Patient?_revinclude=Observation:subject

3. combinations of the above

14.10.3 Adding a custom SearchParameter

Your Firely Server will load the standard parameters from the specification on first startup, so the _id SearchParameter
from the exercise is already known to Firely Server, as well as any of the other standard search parameters for the
resource types.

If you want to implement support for a custom search parameter, you will need to have the definition of that in the form
of a SearchParameter resource, and add it to your Firely Server. The Configure Search Parameters section describes
how to do that.

Of course you will also need to implement the correct AddValueFilter method in your
<resourcetype>QueryFactory to handle the parameter correctly, as is done for the _id parameter in the
exercise.

14.10.4 The end?

This concludes the exercise. An example Github repository contains the completed exercise.

Please feel free to try out more options, and ask for help if you get stuck!

The next topic will show you how to enable Create, Update and Delete interactions.

14.10.5 Postscript

If your resource is split across multiple tables in the database, you’ll need to make use of .Include() to have EF load
the dependent table. To do so in Firely Server, override the GetEntitySet() method in your RelationalQuery class, for
example

protected override IQueryable<ViSiPatient> GetEntitySet(DbContext dbContext)
{

// load the dependent Address table
return dbContext.Set<ViSiPatient>().Include(p => p.Address).AsNoTracking();

}

264 Chapter 14. Firely Server Facade

https://github.com/FirelyTeam/Vonk.Facade.Starter
https://docs.microsoft.com/en-us/ef/core/querying/related-data#eager-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#eager-loading

Firely Server

14.11 Enable changes to the repository

In Exercise: Build your first Facade you have created read and search support for a Firely Server Facade on top of an
existing database. The next part will walk you through enabling create, update and delete support. This will be done
in three steps:

1. Map the FHIR resource to the database model;

2. Implement the IResourceChangeRepository;

3. Indicate support in the appsettings file

14.11.1 1. Map the FHIR data to the model

For both the Create and Update interactions, we need to map our incoming FHIR data to the ViSi model. To do that,
we will add new mapping methods to our ResourceMapper class.

• Add a method called MapVisiPatient to the ResourceMapper class, that takes a FHIR Patient and returns a
ViSiPatient.

• Implement the mapping from the FHIR object to the ViSiPatient model:

public ViSiPatient MapViSiPatient(IResource source)
{

var fhirPatient = source.ToPoco<Patient>();
var visiPatient = new ViSiPatient();

if (source.Id != null)
{

if (!int.TryParse(source.Id, out int id))
throw new VonkRepositoryException("Id needs to be integer to map␣

→˓resource");
visiPatient.Id = id;

}
visiPatient.PatientNumber = fhirPatient.Identifier.Find(i =>

(i.System == "http://mycompany.org/patientnumber")).
→˓Value;

// etc.

return visiPatient;
}

• Where it says ‘etc.’, fill in the rest of the code to map the data to required fields of the database, and any other
fields you have data for.

14.11. Enable changes to the repository 265

Firely Server

14.11.2 2. Implement the IResourceChangeRepository

You are going to implement a repository that handles changes to your database. The interface for this is called
IResourceChangeRepository, which can be found in Vonk.Core.Repository.

• Add a new class ViSiChangeRepository to the project, that implements the IResourceChangeRepository:

public class ViSiChangeRepository : IResourceChangeRepository

• Choose to implement the interface, so the required methods are added to the class.

• Just like with the search repository, you will need your DbContext to query on, and the ResourceMapper to
perform the mapping of the incoming data to your proprietary model.

So put all of that in the constructor:

private readonly ViSiContext _visiContext;
private readonly ResourceMapper _resourceMapper;

public ViSiChangeRepository(ViSiContext visiContext, ResourceMapper resourceMapper)
{

_visiContext = visiContext;
_resourceMapper = resourceMapper;

}

Implementing Create

• Now implement the Create method with a switch on resource type, so you can add other resource types later:

public async Task<IResource> Create(IResource input)
{

switch (input.Type)
{

case "Patient":
return await CreatePatient(input);

default:
throw new NotImplementedException($"ResourceType {input.Type} is not␣

→˓supported.");
}

}

• As you can see, we have deferred the work to a CreatePatient method, which we also need to implement. This
method will add the new resource to the collection, and save the changes to the database:

private async Task<IResource> CreatePatient(IResource input)
{

var visiPatient = _resourceMapper.MapViSiPatient(input);

await _visiContext.Patient.AddAsync(visiPatient);
await _visiContext.SaveChangesAsync();

// return the new resource as it was stored by this server
return _resourceMapper.MapPatient(_visiContext.Patient.Last());

}

266 Chapter 14. Firely Server Facade

Firely Server

• For the Create and Update methods, you will also need to implement the NewId and NewVersion methods,
because Firely Server will call them. For the NewId method, we will return null, since our ViSi database does
not allow us to create our own index value. Since our ViSi repository does not handle versions, we will let the
NewVersion method return null as well:

public string NewId(string resourceType)
{

return null;
}

public string NewVersion(string resourceType, string resourceId)
{

return null;
}

Note: For the ViSi repository we’re using a null value, but you can implement this method any way that’s useful for
your own repository. The public Firely Server for example generates a GUID in these methods.

At this point you can skip ahead to 3. Configure the service and Firely Server, if you want to try and create a new
patient in the ViSi database.

Tip: This is easiest to test if you retrieve an existing resource from the database first with your HTTP tool. Then
change some of the data in the resulting JSON or XML, and send that back to your Facade.

Implementing Update

Implementing the Update method can be done like the Create, with a switch on resource type, and instead of adding
a resource to the collection, you will update the collection:

private async Task<IResource> UpdatePatient(ResourceKey original, IResource update)
{

try
{

var visiPatient = _resourceMapper.MapViSiPatient(update);

var result = _visiContext.Patient.Update(visiPatient);
await _visiContext.SaveChangesAsync();

return _resourceMapper.MapPatient(result.Entity);
}
catch (Exception ex)
{

throw new VonkRepositoryException($"Error on update of {original} to {update.
→˓Key()}", ex);

}
}

14.11. Enable changes to the repository 267

Firely Server

Implementing Delete

Deleting a resource from the collection is done by first looking up the corresponding resource, and then removing it
from the collection. Note that the database used for this exercise cannot process the deletion of the Patient when there
are still related Observations in the BloodPressure table, so we need to remove them as well or choose to throw an error.

• First, create a switch on resource type in the main Delete method again.

• Implement the DeletePatient:

private async Task<IResource> DeletePatient(ResourceKey toDelete)
{

int toDelete_id = int.Parse(toDelete.ResourceId);
var visiPatient = _visiContext.Patient.Find(toDelete_id);

var bpEntries = _visiContext.BloodPressure.Where(bp => bp.PatientId == toDelete_
→˓id);

var result = _resourceMapper.MapPatient(visiPatient);

try
{

_visiContext.BloodPressure.RemoveRange(bpEntries);
_visiContext.Patient.Remove(visiPatient);
await _visiContext.SaveChangesAsync();

}
catch (Exception ex)
{

throw new VonkRepositoryException($"Error on deleting Patient with Id
→˓{toDelete_id}", ex);

}

return result;
}

14.11.3 3. Configure the service and Firely Server

Just like with the search repository, you will need to add your change repository as service to the pipeline. Also, you
will need to indicate support for the CRUD interactions in your Firely Server appsettings.

• In your project, go to the ViSiConfiguration class, and add this line to add an IResourceChangeRepository to the
pipeline:

services.TryAddScoped<IResourceChangeRepository, ViSiChangeRepository>();

• Add support for the interactions to the SupportedModel section of the Firely Server appsettings:

"SupportedInteractions": {
"InstanceLevelInteractions": "read, update, delete",
"TypeLevelInteractions": "search, create",
"WholeSystemInteractions": "capabilities, search"

},

• Adjust PipelineOptions.Branches.Include from Vonk.Core.Operations.Crud.
ReadConfiguration to ``Vonk.Core.Operations include all operations, including Create.

268 Chapter 14. Firely Server Facade

Firely Server

You can now build your project, copy the dll to the Firely Server plugins folder and run Firely Server to test the new
interactions on your Facade.

14.11.4 The end?

This concludes the second exercise. Please feel free to try out more options, and ask for help if you get stuck!

The next topic will show you how to integrate Access Control.

14.11. Enable changes to the repository 269

Firely Server

270 Chapter 14. Firely Server Facade

CHAPTER

FIFTEEN

FIRELY SERVER REFERENCE DOCUMENTATION

The reference documentation lists the available plugins for configuring the pipeline, and the public programming API
of Firely Server for building Plugins and Facades.

15.1 Plugins available for Firely Server

15.1.1 Infrastructural plugins

Name
Scheduler

Configuration
Vonk.Core.Quartz.QuartzConfiguration

License token
http://fire.ly/vonk/plugins/infra

Order
10

Description
Registers a scheduler that can run jobs periodically. You can use this yourself, but with care (you
don’t want jobs slowing down the server):

• Implement a Quartz.IJob, let’s say with class MyJob {. . . }

• Have the Quartz.IScheduler injected

• Call IScheduler.StartJob<MyJob>(TimeSpan runInterval, CancellationToken
cancellationToken)

Name
Maintenance

Configuration
Vonk.Core.Infra.MaintenanceConfiguration

License token
http://fire.ly/vonk/plugins/infra

Order
20

Description
Periodically cleans the indexed values for deleted or superseded resources from the database.

271

http://fire.ly/vonk/plugins/infra
http://fire.ly/vonk/plugins/infra

Firely Server

Name
License

Configuration
Vonk.Core.Licensing.LicenseConfiguration

License token
http://fire.ly/vonk/plugins/infra

Order
120

Description
Registers the LicenseService that checks for a valid license. Without this plugin Firely Server does
not work.

Name
Serialization

Configuration
Vonk.Core.Serialization.SerializationConfiguration

License token
http://fire.ly/vonk/plugins/infra

Order
130

Description
Registers an implementation for the ISerializationService and ISerializationSupport in-
terfaces and actual serializers and parsers for JSON and XML.

Name
Pluggability

Configuration
Vonk.Core.Pluggability.PluggabilityConfiguration

License token
http://fire.ly/vonk/plugins/infra

Order
150

Description
Registers services to dynamically build the IModelService using registered IModelContributor
implementations.

Name
Http to Vonk

Configuration
Vonk.Core.Context.Http.HttpToVonkConfiguration

License token
http://fire.ly/vonk/plugins/http

Order
1110

Description
Builds an IVonkContext out of the HttpContext. You can only access the IVonkContext in the pipeline
from plugins that have a higher order.

272 Chapter 15. Firely Server Reference Documentation

http://fire.ly/vonk/plugins/infra
http://fire.ly/vonk/plugins/infra
http://fire.ly/vonk/plugins/infra
http://fire.ly/vonk/plugins/http
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext?view=aspnetcore-3.0

Firely Server

Name
Vonk to Http

Configuration
Vonk.Core.Context.Http.VonkToHttpConfiguration

License token
http://fire.ly/vonk/plugins/http

Order
1120

Description
Translates the response in the IVonkContext to a response on the HttpContext. It honors the value
of the prefer header if present. It also adds the VonkExceptionMiddleware to the pipeline as a last
resort for catching exceptions.

Name
Formatter

Configuration
Vonk.Core.Context.Format.FormatConfiguration

License token
http://fire.ly/vonk/plugins/infra

Order
1130

Description
Registers an implementation of IFormatter that can write the IVonkContext.Response.Payload
to the response body in the requested format. Does not add a processor to the pipeline.

Name
Long running tasks

Configuration
Vonk.Core.Infra.LongRunning.LongRunningConfiguration

License token
http://fire.ly/vonk/plugins/infra

Order
1170

Description
If Vonk processes a task that could lead to inconsistent output, all other requests are rejected by this
plugin. Long running tasks are e.g. the Import of Conformance Resources and Re-indexing for new
or changed SearchParameters.

Name
Compartments

Configuration
Vonk.Core.Context.Features.CompartmentsConfiguration

License token
http://fire.ly/vonk/plugins/search

Order
1210

15.1. Plugins available for Firely Server 273

http://fire.ly/vonk/plugins/http
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.httpcontext?view=aspnetcore-3.0
http://fire.ly/vonk/plugins/infra
http://fire.ly/vonk/plugins/infra
http://fire.ly/vonk/plugins/search

Firely Server

Description
Recognizes a compartment in a compartment search on system or type level (see Search). It is added
as a feature of type ICompartment to the IVonkContext.Features collection, to be used by Search
later on. This ICompartment feature will limit all queries to within the specified compartment.

Name
Supported Interactions

Configuration
Vonk.Core.Context.Guards.SupportedInteractionsConfiguration

License token
http://fire.ly/vonk/plugins/infra

Order
1220

Description
Blocks interactions that are not listed as supported.

Options
SupportedInteractions, see Enable or disable interactions.

Name
Size Limits

Configuration
Vonk.Core.Context.Guards.SizeLimitsConfiguration

License token
http://fire.ly/vonk/plugins/infra

Order
1225

Description
Rejects bodies that are too large and bundles with too many entries.

Options
SizeLimits, see Protect against large input

Name
Url mapping

Configuration
Vonk.Core.Context.UrlMapping.UrlMappingConfiguration

License token
http://fire.ly/vonk/plugins/infra

Order
1235

Description
In a resource in the request, urls pointing to this instance of Firely Server are made relative. In
a resource in the response, relative urls are made absolute, by adding the base url of the server.
This way the server can be addressed in multiple ways (e.g. http://intranet.acme.com/fhir and https:
//fhir.acme.com) and still provide correct absolute urls.

Name
Default Shapes

274 Chapter 15. Firely Server Reference Documentation

http://fire.ly/vonk/plugins/infra
http://fire.ly/vonk/plugins/infra
http://fire.ly/vonk/plugins/infra
http://intranet.acme.com/fhir
https://fhir.acme.com
https://fhir.acme.com

Firely Server

Configuration
Vonk.Core.Context.Guards.DefaultShapesConfiguration

License token
http://fire.ly/vonk/plugins/infra

Order
4110

Description
If no sort order is given for a search, _lastUpdated:asc is added. If no count is given for a search,
_count=<default count> is added.

Options
BundleOptions.DefaultCount, see Search and History.

15.1.2 Support for different FHIR versions

Name
FHIR R3

Configuration
Vonk.Fhir.R3.FhirR3Configuration

License token
http://fire.ly/vonk/plugins/fhirr3

Order
100

Description
Registers services to support FHIR STU3 (or R3).

Name
FHIR R3 Specification

Configuration
Vonk.Fhir.R3.FhirR3SpecificationConfiguration

License token
http://fire.ly/vonk/plugins/fhirr3

Order
112

Description
Registers an Hl7.Fhir.Specification.IStructureDefinitionSummaryProvider for FHIR
STU3 (or R3).

Name
FHIR R3 Validation

Configuration
Vonk.Fhir.R3.Validation.ValidationConfigurationR3

License token
http://fire.ly/vonk/plugins/fhirr3

Order
4845

15.1. Plugins available for Firely Server 275

http://fire.ly/vonk/plugins/infra
http://fire.ly/vonk/plugins/fhirr3
http://fire.ly/vonk/plugins/fhirr3
http://fire.ly/vonk/plugins/fhirr3

Firely Server

Description
Registers a validator for FHIR STU3 (or R3).

Name
FHIR R4

Configuration
Vonk.Fhir.R4.FhirR4Configuration

License token
http://fire.ly/vonk/plugins/fhirr4

Order
101

Description
Registers services to support FHIR R4.

Name
FHIR R4 Specification

Configuration
Vonk.Fhir.R4.FhirR4SpecificationConfiguration

License token
http://fire.ly/vonk/plugins/fhirr4

Order
112

Description
Registers an Hl7.Fhir.Specification.IStructureDefinitionSummaryProvider for FHIR
R4.

Name
FHIR R4 Validation

Configuration
Vonk.Fhir.R4.Validation.ValidationConfigurationR4

License token
http://fire.ly/vonk/plugins/fhirr4

Order
4845

Description
Registers a validator for FHIR R4.

15.1.3 FHIR RESTful interactions

Name
Read

Configuration
Vonk.Core.Operations.Crud.ReadConfiguration

License token
http://fire.ly/vonk/plugins/read

Order
4410

276 Chapter 15. Firely Server Reference Documentation

http://fire.ly/vonk/plugins/fhirr4
http://fire.ly/vonk/plugins/fhirr4
http://fire.ly/vonk/plugins/fhirr4
http://fire.ly/vonk/plugins/read

Firely Server

Description
Implements FHIR instance read. It will return the Resource that matches the id and the FHIR version.
If a Resource with matching id is found with another FHIR version you are notified.

Name
Create

Configuration
Vonk.Core.Operations.Crud.CreateConfiguration

License token
http://fire.ly/vonk/plugins/create

Order
4420

Description
Implements FHIR type create.

Name
Update

Configuration
Vonk.Core.Operations.Crud.UpdateConfiguration

License token
http://fire.ly/vonk/plugins/update

Order
4430

Description
Implements FHIR instance update, with support for ‘upsert’: creating a Resource with a pre-assigned
id. Note that id’s must be unique across FHIR versions.

Name
Patch

Configuration
Vonk.Core.Operations.Crud.FhirPatchConfiguration

License token
http://fire.ly/vonk/plugins/update

Order
4433

Description
Implements FHIR instance patch, as specified by FHIR Patch.

Name
Delete

Configuration
Vonk.Core.Operations.Crud.DeleteConfiguration

License token
http://fire.ly/vonk/plugins/delete

Order
4440

15.1. Plugins available for Firely Server 277

http://fire.ly/vonk/plugins/create
http://fire.ly/vonk/plugins/update
http://fire.ly/vonk/plugins/update
http://hl7.org/fhir/fhirpatch.html
http://fire.ly/vonk/plugins/delete

Firely Server

Description
Implements FHIR instance delete. Since id’s in Firely Server must be unique across FHIR versions,
the delete is issued on the provided id, regardless of the FHIR version.

Name
Search

Configuration
Vonk.Core.Operations.Search.SearchConfiguration

License token
http://fire.ly/vonk/plugins/search

Description
Implements FHIR Search on system and type level. For data access it uses the registered implemen-
tation of ISearchRepository, which can be any of the implementations provided by Firely Server or
an implementation provided by a Facade plugin. The implementations provided by Firely Server also
require the Index plugin to extract searchparameter values from the resources.

Order
4220

Options
• AdministrationImportOptions, see SearchParameters and other Conformance Resources,

for available Searchparameters

• SupportedModel.RestrictToSearchParameters, see Restrict supported resources and
SearchParameters for available Searchparameters

• BundleOptions, see Search and History, for number of returned results

See ISearchRepository and Firely Server Facade.

Name
Search support

Configuration
Vonk.Core.Repository.RepositorySearchSupportConfiguration

License token
http://fire.ly/vonk/plugins/search

Order
140

Description
Registers services required for Search. It is automatically registered by Search.

Name
Index

Configuration
Vonk.Core.Repository.RepositoryIndexSupportConfiguration

License token
http://fire.ly/vonk/plugins/index

Order
141

Description
Extracts values matching Searchparameters from resources, so they can be searched on.

278 Chapter 15. Firely Server Reference Documentation

http://fire.ly/vonk/plugins/search
http://fire.ly/vonk/plugins/search
http://fire.ly/vonk/plugins/index

Firely Server

Name
Include

Configuration
Vonk.Core.Operations.Search.IncludeConfiguration

License token
http://fire.ly/vonk/plugins/include

Order
4210

Description
Implements _include and _revinclude. This acts on the result bundle of a search. Therefore it
also works out of the box for Facade implementations, provided that the Facade implements support
for the reference Searchparameters that are used in the _(rev)include.

Name
Elements

Configuration
Vonk.Core.Context.Elements.ElementsConfiguration

License token
http://fire.ly/vonk/plugins/search

Order
1240

Description
Applies the _elements parameter to the Resource that is in the response (single resource or bundle).

Name
Summary

Configuration
Vonk.Core.Context.Elements.SummaryConfiguration

License token
http://fire.ly/vonk/plugins/search

Order
1240

Description
Applies the _summary parameter to the Resource that is in the response (single resource or bundle).

Name
History

Configuration
Vonk.Core.Operations.History.HistoryConfiguration

License token
http://fire.ly/vonk/plugins/history

Order
4610

Description
Implements _history on system, type and instance level.

Options
BundleOptions, see Search and History

15.1. Plugins available for Firely Server 279

http://fire.ly/vonk/plugins/include
http://fire.ly/vonk/plugins/search
http://fire.ly/vonk/plugins/search
http://fire.ly/vonk/plugins/history

Firely Server

Name
Version Read

Configuration
Vonk.Core.Operations.History.VersionReadConfiguration

License token
http://fire.ly/vonk/plugins/history

Order
4620

Description
Implements reading a specific version of a resource (<base>/Patient/123/_history/v3).

Name
Capability

Configuration
Vonk.Core.Operations.Capability.CapabilityConfiguration

License token
http://fire.ly/vonk/plugins/capability

Order
4120

Description
Provides the CapabilityStatement on the <base>/metadata endpoint. The CapabilityStatement is
tailored to the FHIR version of the request. The CapabilityStatement is built dynamically by visiting
all the registered implementations of ICapabilityStatementContributor, see Capabilities.

Name
Conditional Create

Configuration
Vonk.Core.Operations.ConditionalCrud.ConditionalCreateConfiguration

License token
http://fire.ly/vonk/plugins/conditionalcreate

Order
4510

Description
Implements FHIR conditional create.

Name
Conditional Update

Configuration
Vonk.Core.Operations.ConditionalCrud.ConditionalUpdateConfiguration

License token
http://fire.ly/vonk/plugins/conditionalupdate

Order
4520

Description
Implements FHIR conditional update.

Name
Conditional Delete

280 Chapter 15. Firely Server Reference Documentation

http://fire.ly/vonk/plugins/history
http://fire.ly/vonk/plugins/capability
http://fire.ly/vonk/plugins/conditionalcreate
http://fire.ly/vonk/plugins/conditionalupdate

Firely Server

Configuration
Vonk.Core.Operations.ConditionalCrud.ConditionalDeleteConfiguration

License token
http://fire.ly/vonk/plugins/conditionaldelete

Order
4530

Description
Implements FHIR conditional delete.

Options
FhirCapabilities.ConditionalDeleteOptions, see FHIR Capabilities

Name
Validation

Configuration
Vonk.Core.Operations.Validation.ValidationConfiguration

License token
http://fire.ly/vonk/plugins/validation

Order
4000

Description
Implements FHIR $validate on type and instance level for POST: POST <base>/Patient/
$validate or POST <base>/Patient/123/$validate.

Name
Instance Validation

Configuration
Vonk.Core.Operations.Validation.InstanceValidationConfiguration

License token
http://fire.ly/vonk/plugins/validation

Order
4840

Description
Implements FHIR $validate on instance level for GET: GET <base>/Patient/123/$validate

Name
Structural Validation

Configuration
Vonk.Core.Operations.Validation.StructuralValidationConfiguration

License token
http://fire.ly/vonk/plugins/validation

Order
1227

Description
Validates the structure of resources sent to Firely Server (is it valid FHIR JSON or XML?).

Name
Prevalidation

15.1. Plugins available for Firely Server 281

http://fire.ly/vonk/plugins/conditionaldelete
http://fire.ly/vonk/plugins/validation
http://hl7.org/fhir/R4/resource-operation-validate.html
http://fire.ly/vonk/plugins/validation
http://hl7.org/fhir/R4/resource-operation-validate.html
http://fire.ly/vonk/plugins/validation

Firely Server

Configuration
Vonk.Core.Operations.Validation.PreValidationConfiguration

License token
http://fire.ly/vonk/plugins/validation

Order
1228

Description
Validates resources sent to Firely Server against their stated profile compliance (in Re-
source.meta.profile). The strictness of the validation is controlled by the options.

Options
Validation, see Validation

Name
Profile filter

Configuration
Vonk.Core.Operations.Validation.ProfileFilterConfiguration

License token
http://fire.ly/vonk/plugins/validation

Order
4310

Description
Blocks resources that do not conform to a list of profiles.

Options
Validation.AllowedProfiles, see Validation

Name
Meta

Configuration
Vonk.Core.Operations.MetaOperation.MetaConfiguration

License token
http://fire.ly/vonk/plugins/meta

Order
5180

Description
Implements FHIR $meta on instance level.

Name
Meta Add

Configuration
Vonk.Core.Operations.MetaOperation.MetaAddConfiguration

License token
http://fire.ly/vonk/plugins/meta

Order
5190

Description
Implements FHIR $meta-add on instance level.

282 Chapter 15. Firely Server Reference Documentation

http://fire.ly/vonk/plugins/validation
http://fire.ly/vonk/plugins/validation
http://fire.ly/vonk/plugins/meta
http://fire.ly/vonk/plugins/meta

Firely Server

Name
Meta Delete

Configuration
Vonk.Core.Operations.MetaOperation.MetaDeleteConfiguration

License token
http://fire.ly/vonk/plugins/meta

Order
5195

Description
Implements FHIR $meta-delete on instance level.

Name
Snapshot Generation

Configuration
Vonk.Core.Operations.SnapshotGeneration.SnapshotGenerationConfiguration

License token
http://fire.ly/vonk/plugins/snapshotgeneration

Order
4850

Description
Implements FHIR $snapshot on a type level: POST <base>/administration/
StructureDefinition/$snapshot.

Name
Batch

Configuration
Vonk.Core.Operations.Transaction.FhirBatchConfiguration

License token
http://fire.ly/vonk/plugins/batch

Order
3110

Description
Processes a batch Bundle by sending each entry through the rest of the processing pipeline and gath-
ering the results.

Options
SizeLimits, see Protect against large input

Name
Transaction

Configuration
Vonk.Core.Operations.Transaction.FhirTransactionConfiguration

License token
http://fire.ly/vonk/plugins/transaction

Order
3120

Description
Process a transaction Bundle by sending each entry through the rest of the processing pipeline and

15.1. Plugins available for Firely Server 283

http://fire.ly/vonk/plugins/meta
http://fire.ly/vonk/plugins/snapshotgeneration
http://hl7.org/fhir/R4/structuredefinition-operation-snapshot.html
http://fire.ly/vonk/plugins/batch
http://fire.ly/vonk/plugins/transaction

Firely Server

gathering the results. Different from Batch, Transaction succeeds or fails as a whole. Transaction
requires an implementation of Vonk.Core.Repository.IRepoTransactionService for trans-
action support by the underlying repository.

Options
• SizeLimits, see Validation

• Repository, see Repository

Name
LastN

Configuration
Vonk.Plugin.LastN.LastNConfiguration

License token
http://fire.ly/vonk/plugins/lastn

Order
5007

Description
Implements FHIR $lastn on Observation resources.

Name
Erase

Configuration
Vonk.Plugin.EraseOperation.EraseOperationConfiguration

License token
http://fire.ly/vonk/plugins/erase

Order
5300

Description
Provides functionality to hard-delete FHIR resources in Firely Server database as opposed to the
soft-delete used by default.

15.1.4 Terminology

Name
CodeSystem Lookup

Configuration
Vonk.Plugins.Terminology.[R3|R4|R5].CodeSystemLookupConfiguration

License token
http://fire.ly/vonk/plugins/terminology

Order
5110

Description
Implements FHIR $lookup on type level requests: POST <base>/administration/CodeSystem/
$lookup or GET <base>/administration/CodeSystem/$lookup?...

Name
CodeSystem FindMatches / Compose

284 Chapter 15. Firely Server Reference Documentation

http://fire.ly/vonk/plugins/lastn
https://www.hl7.org/fhir/observation-operation-lastn.html
http://fire.ly/vonk/plugins/erase
http://fire.ly/vonk/plugins/terminology
http://hl7.org/fhir/codesystem-operation-lookup.html

Firely Server

Configuration
Vonk.Plugins.Terminology.CodeSystemFindMatchesConfiguration

License token
http://fire.ly/vonk/plugins/terminology

Order
5220

Description
Implements FHIR $compose on type level requests: POST <base>/administration/
CodeSystem/$find-matches``and on instance level requests: ``POST <base>/
administration/CodeSystem/[id]/$find-matches or GET <base>/administration/
CodeSystem/[id]/$find-matches?...

Name
ValueSet Validate Code

Configuration
Vonk.Plugins.Terminology.ValueSetValidateCodeConfiguration

License token
http://fire.ly/vonk/plugins/terminology

Order
5120

Description
Implements FHIR $validate-code on type level requests: POST <base>/administration/
ValueSet/$validate-code and instance level requests: GET <base>/administration/
ValueSet/[id]/$validate-code?... and POST <base>/administration/ValueSet/
[id]/$validate-code

Name
ValueSet Expand

Configuration
Vonk.Plugins.Terminology.ValueSetExpandConfiguration

License token
http://fire.ly/vonk/plugins/terminology

Order
5140

Description
Implements FHIR $expand on instance level requests: GET <base>/administration/ValueSet/
[id]/$expand?... and POST <base>/administration/ValueSet/[id]/$expand and on
type level requests: POST <base>/administration/ValueSet/$expand.

Name
ConceptMap Translate

Configuration
Vonk.Plugins.Terminology.ConceptMapTranslateConfiguration

License token
http://fire.ly/vonk/plugins/terminology

Order
5260

15.1. Plugins available for Firely Server 285

http://fire.ly/vonk/plugins/terminology
http://hl7.org/fhir/codesystem-operation-find-matches.html
http://fire.ly/vonk/plugins/terminology
http://hl7.org/fhir/codesystem-operation-validate-code.html
http://fire.ly/vonk/plugins/terminology
http://hl7.org/fhir/codesystem-operation-expand.html
http://fire.ly/vonk/plugins/terminology

Firely Server

Description
Implements FHIR $translate on instance level requests: GET <base>/administration/
ConceptMap/[id]/$translate?... and POST <base>/administration/ValueSet/[id]/
$translate and on type level requests: POST <base>/administration/ConceptMap/
$translate.

Name
CodeSystem Subsumes

Configuration
Vonk.Plugins.Terminology.CodeSystemSubsumesConfiguration

License token
http://fire.ly/vonk/plugins/terminology

Order
5280

Description
Implements FHIR $subsumes on instance level requests: GET <base>/administration/
CodeSystem/[id]/$subsumes?... and on type level requests: POST <base>/
administration/CodeSystem/$subsumes or GET <base>/administration/CodeSystem/
$subsumes?...

Name
CodeSystem Closure

Configuration
Vonk.Plugins.Terminology.CodeSystemClosureConfiguration

License token
http://fire.ly/vonk/plugins/terminology

Order
5300

Description
Implements FHIR $closure on system level requests: POST <base>/administration/$closure

15.1.5 SMART on FHIR

Name
SMART on FHIR

Configuration
Vonk.Smart.SmartConfiguration.SmartConfiguration

License token
http://fire.ly/vonk/plugins/smartonfhir

Order
2000

Description
Implements SMART on FHIR authentication and authorization, see Access control and SMART .

286 Chapter 15. Firely Server Reference Documentation

http://hl7.org/fhir/conceptmap-operation-translate.html
http://fire.ly/vonk/plugins/terminology
http://hl7.org/fhir/codesystem-operation-subsumes.html
http://fire.ly/vonk/plugins/terminology
http://hl7.org/fhir/codesystem-operation-closure.html
http://fire.ly/vonk/plugins/smartonfhir

Firely Server

15.1.6 Subscriptions

Name
Subscriptions

Configuration
Vonk.Subscriptions.SubscriptionConfiguration.SubscriptionConfiguration

License token
http://fire.ly/vonk/plugins/subscriptions

Order
3200

Description
Implements the FHIR Subscriptions framework, see Subscriptions.

15.1.7 Auditing

Name
Username log

Configuration
Vonk.Plugin.Audit.UsernameLoggingConfiguration

License token
http://fire.ly/vonk/plugins/audit

Order
2010

Description
Makes the user id and name from the JWT token (if present) available for logging. See Auditing for
more info.

Name
Audit logging for transactions

Configuration
Vonk.Plugin.Audit.AuditTransactionConfiguration

License token
http://fire.ly/vonk/plugins/audit

Order
3100

Description
Logs requests and responses for transactions to a file. See Auditing for more info.

Name
Audit log

Configuration
Vonk.Plugin.Audit.AuditConfiguration

License token
http://fire.ly/vonk/plugins/audit

Order
3150

15.1. Plugins available for Firely Server 287

http://fire.ly/vonk/plugins/subscriptions
http://fire.ly/vonk/plugins/audit
http://fire.ly/vonk/plugins/audit
http://fire.ly/vonk/plugins/audit

Firely Server

Description
Logs requests and responses to a file. See Auditing for more info.

Name
AuditEvent logging for transactions

Configuration
Vonk.Plugin.Audit.AuditEventTransactionConfiguration

License token
http://fire.ly/vonk/plugins/audit

Order
3160

Description
Logs requests and responses for transactions to the database. See Auditing for more info.

Name
AuditEvent logging

Configuration
Vonk.Plugin.Audit.AuditEventConfiguration

License token
http://fire.ly/vonk/plugins/audit

Order
3170

Description
Logs requests and responses to the database. See Auditing for more info.

15.1.8 Demo UI

Name
Demo UI

Configuration
Vonk.UI.Demo.DemoUIConfiguration.DemoUIConfiguration

License token
http://fire.ly/vonk/plugins/demoui

Order
800

Description
Provides the landing page that you see when you request the base url from a browser. If you want to
provide your own landing page, replace this plugin with your own. There is an example of that, see
Firely Server Plugin example - Create a new landing page.

288 Chapter 15. Firely Server Reference Documentation

http://fire.ly/vonk/plugins/audit
http://fire.ly/vonk/plugins/audit
http://fire.ly/vonk/plugins/demoui

Firely Server

15.1.9 Documents

Name
Document generation

Configuration
Vonk.Plugins.DocumentOperation.DocumentOperationConfiguration

License token
http://fire.ly/vonk/plugins/document

Order
4900

Description
Implements FHIR $document : POST <base>/Composition/$document or GET <base>/
Composition/[id]/$document

Code
GitHub

Name
Document signing

Configuration
Vonk.Plugins.SignatureService.SignatureConfiguration

License token
http://fire.ly/vonk/plugins/signature

Order
4899

Description
Signs a document generated by $document.

Name
Document endpoint

Configuration
Vonk.Plugins.DocumentHandling.DocumentHandlingConfiguration

License token
http://fire.ly/vonk/plugins/documenthandling

Order
4950

Description
Allows FHIR document bundles to be posted to the base endpoint. Consult the documentation for
more information.

15.1. Plugins available for Firely Server 289

http://fire.ly/vonk/plugins/document
http://hl7.org/fhir/R4/composition-operation-document.html
https://github.com/FirelyTeam/Vonk.Plugin.DocumentOperation
http://fire.ly/vonk/plugins/signature
http://fire.ly/vonk/plugins/documenthandling
https://www.hl7.org/fhir/documents.html#3.3

Firely Server

15.1.10 Conversion

Name
Format conversion

Configuration
Vonk.Plugins.ConvertOperation.ConvertOperationConfiguration

License token
http://fire.ly/vonk/plugins/convert

Order
4600

Description
Implements FHIR $convert : POST <base>/$convert to convert between JSON and XML repre-
sentation.

15.1.11 Binary

Name
Binary wrapper (Encode)

Configuration
Vonk.Plugins.BinaryWrapper.BinaryEncodeConfiguration

License token
http://fire.ly/vonk/plugins/binarywrapper

Order
1112

Description
Wraps an incoming binary format in a Binary resource for further processing by the pipeline.

Settings

"Vonk.Plugin.BinaryWrapper":{
"RestrictToMimeTypes": ["application/pdf", "text/plain", "image/png",

→˓"image/jpeg"]
},

Name
Binary wrapper (Decode)

Configuration
Vonk.Plugins.BinaryWrapper.BinaryDecodeConfiguration

License token
http://fire.ly/vonk/plugins/binarywrapper

Order
1122

Description
Implements GET <base>/Binary/<id>, retrieve back the Binary resource in its native format.

290 Chapter 15. Firely Server Reference Documentation

http://fire.ly/vonk/plugins/convert
http://hl7.org/fhir/R4/resource-operation-convert.html
http://fire.ly/vonk/plugins/binarywrapper
http://fire.ly/vonk/plugins/binarywrapper

Firely Server

15.1.12 Repository implementations

Name
Memory Repository

Configuration
Vonk.Repository.MemoryConfiguration

license token
http://fire.ly/vonk/plugins/repository/memory

Order
210

Description
Implements a repository in working memory that fully supports all of the capabilities of Firely Server.
This implementation is mainly used for unittesting.

Name
Memory Administration Repository

Configuration
Vonk.Repository.MemoryAdministrationConfiguration

license token
http://fire.ly/vonk/plugins/repository/memory

Order
211

Description
Implements a repository in working memory for the Administration API. This implementation is
mainly used for unittesting.

Name
MongoDb Repository

Configuration
Vonk.Repository.MongoDbConfiguration

license token
http://fire.ly/vonk/plugins/repository/mongo-db

Order
230

Description
Implements a repository in MongoDb that fully supports all of the capabilities of Firely Server.

Name
MongoDb Administration Repository

Configuration
Vonk.Repository.MemoryAdministrationConfiguration

license token
http://fire.ly/vonk/plugins/repository/mongo-db

Order
231

Description
Implements a repository in MongoDb for the Administration API.

15.1. Plugins available for Firely Server 291

http://fire.ly/vonk/plugins/repository/memory
http://fire.ly/vonk/plugins/repository/memory
http://fire.ly/vonk/plugins/repository/mongo-db
http://fire.ly/vonk/plugins/repository/mongo-db

Firely Server

Name
SQLite Repository

Configuration
Vonk.Repository.SqliteConfiguration

license token
http://fire.ly/vonk/plugins/repository/sqlite

Order
240

Description
Implements a repository in SQLite that fully supports all of the capabilities of Firely Server.

Name
SQLite Administration Repository

Configuration
Vonk.Repository.SqliteAdministrationConfiguration

license token
http://fire.ly/vonk/plugins/repository/sqlite

Order
241

Description
Implements a repository in SQLite for the Administration API.

Name
SQL Server Repository

Configuration
Vonk.Repository.SqlConfiguration

license token
http://fire.ly/vonk/plugins/repository/sql-server

Order
220

Description
Implements a repository in SQL Server that fully supports all of the capabilities of Firely Server.

Name
SQL Server Administration Repository

Configuration
Vonk.Repository.SqlAdministrationConfiguration

license token
http://fire.ly/vonk/plugins/repository/sql-server

Order
221

Description
Implements a repository in SQL Server for the Administration API.

292 Chapter 15. Firely Server Reference Documentation

http://fire.ly/vonk/plugins/repository/sqlite
http://fire.ly/vonk/plugins/repository/sqlite
http://fire.ly/vonk/plugins/repository/sql-server
http://fire.ly/vonk/plugins/repository/sql-server

Firely Server

15.1.13 Administration API

Name
Administration API

Configuration
Vonk.Administration.Api.AdministrationOperationConfiguration

license token
http://fire.ly/vonk/plugins/administration

Order
1160

Description
Sets up a sequence of plugins for the Administration API. Administration API is different from gen-
eral plugins since it branches off of the regular processing pipeline and sets up a second pipeline for
the /administration endpoint.

Name
Fhir STU3 Administration services

Configuration
Vonk.Administration.FhirR3.RepositoryConfigurationR3

license token
http://fire.ly/vonk/plugins/administration/fhirr3

Order
4310

Description
Implements support services to work with FHIR STU3 conformance resources in the Administration
API.

Name
Fhir R4 Administration services

Configuration
Vonk.Administration.FhirR4.RepositoryConfigurationR4

license token
http://fire.ly/vonk/plugins/administration/fhirr4

Order
4310

Description
Implements support services to work with FHIR R4 conformance resources in the Administration
API.

15.1. Plugins available for Firely Server 293

http://fire.ly/vonk/plugins/administration
http://fire.ly/vonk/plugins/administration/fhirr3
http://fire.ly/vonk/plugins/administration/fhirr4

Firely Server

15.1.14 Bulk Data

Name
System Bulk Data Export

Configuration
Vonk.Plugin.BulkDataExport.SystemBulkDataExportConfiguration

license token
http://fire.ly/vonk/plugins/bulk-data-export

Order
5003

Description
Support for system-level $export operation. See Bulk Data Export.

Name
Group Bulk Data Export

Configuration
Vonk.Plugin.BulkDataExport.GroupBulkDataExportConfiguration

license token
http://fire.ly/vonk/plugins/bulk-data-export

Order
5004

Description
Support for instance-level $export operation. See Bulk Data Export.

Name
Patient Bulk Data Export

Configuration
Vonk.Plugin.BulkDataExport.PatientBulkDataExportConfiguration

license token
http://fire.ly/vonk/plugins/bulk-data-export

Order
5005

Description
Support for type-level $export operation. See Bulk Data Export.

Name
Patient everything

Configuration
Vonk.Plugin.PatientEverything

license token
http://fire.ly/vonk/plugins/patient-everything

Order
5006

Description
Request a Patient record. See Patient $everything.

294 Chapter 15. Firely Server Reference Documentation

Firely Server

15.2 Important classes and interfaces

If you want to develop a plugin for Firely Server, there are a couple of classes that you will probably interact with. This
page lists those classes, with an explanation of each.

15.2.1 IResource

namespace
Vonk.Core.Common

purpose
IResource is the abstraction for all FHIR resources in Firely Server. It is used in the request and the
response, and thereby all through the pipeline. It allows you to program against resources in different
Fhir.NET API (the Resource class is defined in each version separately), as well as against resources
that do not even have a POCO implementation.

/// <summary>
/// Abstraction of a resource in some format. Specifies the properties of a Resource␣
→˓that Firely Server needs to read and maintain.
/// <para>Future: may be extended with Tags and Labels.</para>
/// </summary>
public interface IResource : ISourceNode
{

/// <summary>
/// Type of resource, e.g. Patient or AllergyIntolerance.
/// </summary>
string Type { get; }

/// <summary>
/// Logical identity of resource, e.g. 'example' or 'e3f5b0b8-4570-4e4c-b597-

→˓e6523aff3a19'. Does not contain the resourcetype.
/// Refers to Resource.id
/// IResource is immutable, so to update this, use resourceWithNewId = this.SetId(),

→˓ from IResourceExtensions.
/// In the context of a repository, consider IResourceChangeRepository.EnsureMeta().
/// </summary>
string Id { get; }

/// <summary>
/// Version of resource. Refers to Resource.meta.versionId.
/// IResource is immutable, so to update this, use resourceWithNewVersion = this.

→˓SetVersion(), from IResourceExtensions.
/// In the context of a repository, consider IResourceChangeRepository.EnsureMeta().
/// </summary>
string Version { get; }

/// <summary>
/// Model that the resource was defined in.
/// Common models are the different versions of FHIR, defined in <see cref=

→˓"VonkConstants.Model"/>
/// </summary>
string InformationModel { get; }

(continues on next page)

15.2. Important classes and interfaces 295

Firely Server

(continued from previous page)

/// <summary>
/// When was the resource last updated?
/// Refers to Resource.meta.lastUpdated.
/// IResource is immutable, so to update this, use resourceWithNewLastUpdated =␣

→˓this.SetLastUpdated(DateTimeOffset) from IResourceExtensions.
/// In the context of a repository, consider IResourceChangeRepository.EnsureMeta().
/// </summary>
DateTimeOffset? LastUpdated { get; }

/// <summary>
/// Is this a contained resource, or a container resource?
/// A resource is a container resource if it is not contained. Even if it has no␣

→˓contained resources embedded.
/// </summary>
ResourceContained Contained { get; }

/// <summary>
/// Direct access to contained resources, if any. Prefer to return an empty list␣

→˓otherwise.
/// Refers to DomainResource.contained.
/// </summary>
IEnumerable<IResource> ContainedResources { get; }

}

If you work with a POCO, you can use the extension method ToIResource() from Vonk.Fhir.R3 to adapt it to an IRe-
source:

var patientPoco = new Patient(); //Requires Hl7.Fhir.Model
var resource = patientPoco.ToIResource();

IResource is immutable, so changes will always result in a new instance. Changes can usually be applied with extension
methods on ISourceNode, found in Vonk.Core.ElementModel.ISourceNodeExtensions. There are also several extension
methods specifically for IResource in Vonk.Core.Common.IResourceExtensions:

var updatedResource = oldResource.Add(SourceNode.Valued("someElement", "someValue");
//Continue with updatedResource, since oldResource will not have the change.

IResource extension methods

IResource has a whole list of extension methods for manipulating them, conversion between ISourceNode
and IResource and caching objects within it. All these methods are in the namespace Vonk.Core.Common.
IResourceExtensions. Please check the ///-comments on the methods for more information.

296 Chapter 15. Firely Server Reference Documentation

Firely Server

15.2.2 ElementModel, manipulating IResource and ISourceNode

As stated in IResource, IResource is immutable, and so is ISourceNode that it is based on. Still, there are cases
where you would want to manipulate a resource, e.g. add, change or remove elements. The namespace Vonk.Core.
ElementModel has methods to do so. All of these methods do NOT change the original structure (the input IResource
or ISourceNode), but instead return an updated structure.

ISourceNode manipulation

All the ISourceNode extension methods can be used on IResource as well. If you need an IResource as result, just
turn the resulting ISourceNode to an IResource again. So if you added an element to an ISourceNode:

IResource result = input.AddIfNotExists(SourceNode.Valued("active", "false")).
→˓ToIResource(input.InformationModel);

For some of the more common extension methods we provide an overload on IResource that does this for you, like
IResource.Patch(...)

All the methods below are in the namespace Vonk.Core.ElementModel.ISourceNodeExtensions:

Add(this ISourceNode original, ISourceNode newChild)→ ISourceNode
Add the newChild as a child node to the original. It will be added at the end of the Children.

Add(this ISourceNode original, ITypedElement newChild)→ ISourceNode
Overload of Add(ISourceNode newChild) that lets you add an ITypedElement as new child.

AddIf(this ISourceNode original, ISourceNode newChild, Func<ISourceNode, bool> addIf)→ ISourceNode
Add the newChild as a child node to the original if the addIf predicate on original is met. It will be added
at the end of the Children.

Add(this ISourceNode original, TypedElement newChild, Func<ISourceNode, bool> addIf)→ ISourceNode
Similar to AddIf(ISourceNode newChild, Func<ISourceNode, bool> addIf) that lets you add an ITypedElement
as new child.

AddIfNotExists(this ISourceNode original, ISourceNode newChild)→ ISourceNode
Add the newChild as a child node to the original if there is no child with the same name yet. It will be added
at the end of the Children.

AddIfNotExists(this ISourceNode original, ISourceNode newChild, Func<ISourceNode, bool> exists)→
ISourceNode

Add the newChild as a child node to the original if the exists predicate on original is not satisfied. This
is like AddIfNotExist(ISourceNode newChild), but here you get to specify what ‘exists’ means. It will be
added at the end of the Children.

AddIfNotExists(this ISourceNode original, string location, ISourceNode newChild)→ ISourceNode
Navigate to lcoation. Then add the newChild as a child node to the original if there is no child with the
same name yet.

AddIfNotExists(this ISourceNode original, ISourceNode newChild, string location, Func<ISourceNode, bool>
exists)→ ISourceNode

Navigate to location. Then add the newChild as a child node if the exists predicate on the current node is
not satisfied.

AnnotateWith<T>(this ISourceNode original, T annotation,
bool hideExisting = false) -> ISourceNode

15.2. Important classes and interfaces 297

Firely Server

Add an annotation of type T to the original. When hideExisting == true, any existing annotations of type T
are not visible anymore on the returned ISourceNode.

GetBoundAnnotation<T>(this ISourceNode original,) where T : class, IBoundAnnotation -> T

Retrieve an annotation that is bound directly to original, not to any of the nodes it may decorate. (ISourceNode
is immutable, to changes are usually a pile of wrappers around the original SourceNode, and each of the
wrappers can add / replace annotations.)

RemoveEmptyNodes(this ISourceNode original, ISourceNode newChild)→ ISourceNode
Remove any nodes that have no value or children. This happens recursively: if a node has only children with
empty values, it will be removed as well. This way the returned ISourceNode conforms to the invariant in the
FHIR specification that an element either has a value or children.

RemoveEmptyNodes(this ISourceNode original, ISourceNode newChild, string location)→ ISourceNode
Remove any nodes that have no value or children, from the specified location downwards. This happens
recursively: if a node has only children with empty values, it will be removed as well.

Child(this ISourceNode original, string name, int arrayIndex = 0)→ ISourceNode
Convenience method to get the child with name name at position arrayIndex. Usually used to get a child of
which you know there is only one: patientNode.Child("active")

ChildString(this ISourceNode original, string name, int arrayIndex = 0)→ ISourceNode
Convenience method to get the value of the child with name name at position arrayIndex. Usually used to get
a child of which you know there is only one: patientNode.ChildString("id")

ForceAdd(this ISourceNode original, string addAt, ISourceNode newChild)→ ISourceNode
Add the newChild at location addAt. Create the intermediate nodes if neccessary.

AddOrReplace(this ISourceNode original, Func<ISourceNode, bool> match, ISourceNode toAdd,
Func<ISourceNode, ISourceNode> replace)→ ISourceNode

Find any child nodes of original that match the match predicate. Apply replace to them. If none are found,
add toAdd as new child.

AddOrReplace(this ISourceNode original, ISourceNode toAdd, Func<ISourceNode, ISourceNode> replace)→
ISourceNode

Optimized overload of the previous method for matching on the node name. It will perform replace on any
child node of original with the same name as toAdd. If none are found it will add toAdd as new child node.

Remove(this ISourceNode original, string location)→ ISourceNode
Remove the node at location, if any. If that results in parent nodes becoming empty (no Text, no Children),
those are removed as well.

SelectNodes(this ISourceNode original, string fhirPath)→ IEnumerable<ISourceNode>
Run fhirPath over the original, but with the limitations of untyped nodes. It will return the matching nodes.
Use valueDateTime/valueBoolean instead of just ‘value’ for choice types. Only use this method if you are familiar
with the differences in the naming of nodes between ISourceNode and ITypedElement.

SelectText(this ISourceNode original, string fhirPath)→ string
Run fhirPath over the original, but with the limitations of untyped nodes. Returns the Text of the first
matching node. Use valueDateTime/valueBoolean instead of just ‘value’ for choice types. Only use this method
if you are familiar with the differences in the naming of nodes between ISourceNode and ITypedElement.

Patch(this ISourceNode original, string location, Func<ISourceNode, ISourceNode> patch)→ ISourceNode
Find any nodes at location and apply patch to them. For patch you can use other methods listed here like
Rename, Add or Revalue. location is evaluated as a fhirpath statement, with the limitations of untyped nodes.

298 Chapter 15. Firely Server Reference Documentation

Firely Server

Patch(this ISourceNode original, string[] locations, Func<ISourceNode, ISourceNode> patch)→ ISourceNode
Find any nodes having one of the locations as their Location and apply patch to them. If you don’t know
exact locations, use original.Patch(location, patch), see above.

ForcePatch(this ISourceNode original, string forcePath, Func<ISourceNode, ISourceNode> patch)→
ISourceNode

Enforce that forcePath exists. Then patch the resulting node(s) with patch.

ForcePatchAt(this ISourceNode original, string fromLocation, string forcePath, Func<ISourceNode,
ISourceNode> patch)→ ISourceNode

For each node matching the fromLocation: enforce that fromLocation.forcePath exists, then
patch the resulting node(s) with patch. E.g. someBundle.ForcePatchAt(“entry”, “request”, node =>
node.Add(SourceNode.Valued(“url”, “someUrl”)) will add request.url with value “someUrl” to every entry.

Relocate(this ISourceNode original, string newLocation)→ ISourceNode
Set original.Location to the newLocation, and update all its descendants’ Location properties recursively.

Rename(this ISourceNode original, string newName)→ ISourceNode
Set original.Name to the newName.

Revalue(this ISourceNode original, string newValue)→ ISourceNode
Set original.Text to newValue.

Revalue(this ISourceNode original, Dictionary<string, string> replacements)→ ISourceNode
replacements is a dictionary of location + newValue. On each matching location under original, the value
will be set to the according newValue from replacements.

AnnotateWithSourceNode(this ISourceNode original)→ ISourceNode
Add original as annotation to itself. Very specific use case.

ITypedElement manipulation

All the methods below are in the namespace Vonk.Core.ElementModel.ITypedElementExtensions:

Add(this ITypedElement original, ITypedElement newChild, Func<ITypedElement, bool> addIf)→ ISourceNode
Add newChild as child to original if addIf on original evaluates to true. Convenience overload of
ISourceNodeExtensions.Add(ISourceNode, ITypedElement, Func<ISourceNode, bool>)

Add(this ITypedElement original, ITypedElement newChild)→ ISourceNode
Add newChild as child to original. Convenience overload of ISourceNodeExtensions.
Add(ISourceNode, ITypedElement)

AddIfNotExists(this ITypedElement original, ITypedElement newChild)→ ISourceNode
Add newChild as child to original if no child with the same name exists yet. Convenience overload of
ISourceNodeExtensions.AddIfNotExists(ISourceNode, ITypedElement)

AddIf(this ITypedElement original, ISourceNode newChild, Func<ITypedElement, bool> addIf)→ ISourceNode
Add newChild as child to original if addIf on original evaluates to true. Convenience overload of
ISourceNodeExtensions.AddIf(ISourceNode, ISourceNode, Func<ISourceNode, bool>)

method
Add(this ITypedElement original, ISourceNode newChild) Add newChild as child to original.

method
AddIfNotExists(this ITypedElement original, ISourceNode newChild) Add newChild as child
to original if no child with the same name exists yet. Convenience overload of
AddIfNotExists(ITypedElement, ITypedElement)

15.2. Important classes and interfaces 299

Firely Server

Cache(this ITypedElement original)→ ITypedElement
Prevent recalculation of the Children upon every access.

Child(this ITypedElement element, string name, int arrayIndex = 0)→ ITypedElement
Returns n-th child with the specified name, if any.

ChildString(this ITypedElement element, string name, int arrayIndex = 0)→ string
Returns the value of the n-th child with the specified name as string, if any.

DefinitionSummary(this ITypedElement element, IStructureDefinitionSummaryProvider provider)→
IStructureDefinitionSummary

Returns the summary for the actual type of the element. Especially useful if the element is of a choicetype.

AddParent(this ITypedElement element)→ ITypedElement
Add Vonk.Core.ElementModel.IParentProvider annotations to element and its descendants.

GetParent(this ITypedElement element)→ ITypedElement
Get the parent of this element, through the Vonk.Core.ElementModel.IParentProvider annotation (if
present).

AddTreePath(this ITypedElement element)→ ITypedElement
Add the Vonk.Core.ElementModel.ITreePathGenerator annotation. TreePath is the Location without any
indexes (no [n] at the end).

GetTreePath(this ITypedElement element)→ string
Get the value of the Vonk.Core.ElementModel.ITreePathGenerator annotation, if present. TreePath is the
Location without any indexes (no [n] at the end).

15.2.3 IVonkContext

namespace
Vonk.Core.Context

purpose
IVonkContext is the Vonk-specific counterpart to HttpContext from ASP.NET Core. It contains an
IVonkRequest and IVonkResponse object that allow you to get information from the request and set
results in the response, both in Firely Server terms.

Have IVonkContext injected in the method where you need it. Use a configuration class to call this method from the
pipeline and have the actual context injected. A more complete template is found at Template for a plugin.

public class SomeService
{
public async Task DoMyOperation(IVonkContext vonkContext)
{
//...

}
}

public static class SomeServiceConfiguration
{
public static IApplicationBuilder UseMyOperation(this IApplicationBuilder app)
{
return app.UseVonkInteractionAsync<SomeService>((svc, context) => svc.

→˓DoMyOperation(context));
(continues on next page)

300 Chapter 15. Firely Server Reference Documentation

Firely Server

(continued from previous page)

}
}

If you also need access to the raw HttpContext, you have two options:

1. The IVonkContext.HttpContext() extension method gives you the original HttpContext. Be aware though:

• Situations may arise where there is no HttpContext, so be prepared for that.

• When handling batches or transactions, an IVonkContext is created for each entry in the bundle. But they
all refer to the same original HttpContext.

2. Create a normal ASP.NET Core Middleware class and access the IVonkContext with the extension method
Vonk() on HttpRequest. A more complete template is found at Returning non-FHIR content from a plugin.

public class SomeMiddleware
{
public SomeMiddleware(RequestDelegate next)
{
//...

}

public async Task Invoke(HttpContext httpContext)
{
var vonkContext = httpContext.Vonk();
//...

}
}

public static class SomeMiddlewareConfiguration
{
public static IApplicationBuilder UseSomeMiddleware(this IApplicationBuilder app)
{
return app.UseMiddleware<SomeMiddleware>(); //Just plain ASP.NET Core,␣

→˓nothing Firely Server specific here.
}

}

IVonkContext has three major parts, that are explained below. The InformationModel tells you the FHIR version for
which the request was made.

public interface IVonkContext
{

IVonkRequest Request {get;}

IArgumentCollection: Arguments{get;}

IVonkResponse Response {get;}

string InformationModel {get;}
}

And because you frequently need the parts instead of the context itself, there is an extension method on IVonkContext:

15.2. Important classes and interfaces 301

Firely Server

public (IVonkRequest request, IArgumentCollection args, IVonkResponse respons)␣
→˓Parts(this IVonkContext vonkContext)

IVonkRequest

namespace
Vonk.Core.Context

purpose
Get information about the request made, in Firely Server / FHIR terms.

You can access the current IVonkRequest through the IVonkContext. Its properties are:

public interface IVonkRequest
{
string Path { get; }
string Method { get; }
string CustomOperation { get; }
VonkInteraction Interaction { get; }
RequestPayload Payload { get; set; }

}

Path and Method relate directly to the equivalents on HttpContext. Interaction tells you which of the FHIR REST-
ful interactions was called. CustomOperation is only filled if one of the custom operations was invoked, like e.g.
$validate. All of these can be filtered by the InteractionHandlerAttribute, so you typically don’t need to inspect
them manually.

Payload indirectly contains the resource that was sent in the body of the request. You are advised to only use the
extension methods to access it:

public static bool TryGetPayload(this IVonkRequest request, out IResource resource)

TryGetPayload is useful if your code wants to act on the payload if it is present, but does not care if it is not.

public void ThisMethodActsOnThePayloadIfPresent(IVonkContext vonkContext)
{
var (request, args, response) = vonkContext.Parts();
if (request.TryGetPayload(response, out var resource))
{
// do something with the resource.

}

}

public static bool GetRequiredPayload(this IVonkRequest request, IVonkResponse response,␣
→˓out IResource resource)

GetRequiredPayload is useful if your code expects the payload to be present. It will set the appropriate response code
and OperationOutcome on the provided response if it is not present or could not be parsed. Then you can choose to
end the pipeline and thus return the error to the user.

public void ThisMethodNeedsAPayload(IVonkContext vonkContext)
{

(continues on next page)

302 Chapter 15. Firely Server Reference Documentation

Firely Server

(continued from previous page)

var (request, args, response) = vonkContext.Parts();
if (!request.GetRequiredPayload(response, out var resource))
{
return; //If you return with an error code in the response, Firely Server will end␣

→˓the pipeline
}
// do something with the resource.

}

If you want to change the payload, assign a whole new one. Generally you would want to change something to the old
payload. But IResource is immutable, so changes to it yield a new instance. That leads to this pattern

if (request.TryGetPayload(response, out var resource)
{
//Explicit typing of variables for clarity, normally you would use 'var'.
ISourceNode updatedNode = resource.Add(SourceNode.Valued("someElement", "someValue");
IResource updatedResource = updatedNode.ToIResource();
request.Payload = updatedResource.ToPayload();

}

IArgumentCollection, IArgument

namespace
Vonk.Core.Context

purpose
Access arguments provided in the request.

The IVonkContext.Arguments property contains all the arguments from the request, from the various places:

1. The path segments: /Patient/123/_history/v1 will translate to three arguments, _type, _id and _version.

2. The query parameters: ?name=Fred&active=true will translate to two arguments, name and active.

3. The headers:

1. If-None-Exists = identifier=abc&active=true will translate to two arguments, identifier and active.

2. If-Modified-Since, If-None-Match, If-Match: will each translate to one argument

An individual argument will tell you its name (ArgumentName), raw value (ArgumentValue) and where it came from
(Source).

Handling arguments

An argument by default has a Status of Unhandled.

If an argument is of interest to the operation you implement in your plugin, you can handle the argument. It is important
to mark arguments handled if:

• you handled them

• or the handling is not relevant anymore because of some error you encountered

In both cases you simply set the Status to Handled.

15.2. Important classes and interfaces 303

Firely Server

If an argument is incorrect, you can set its status to Error and set the Issue to report to the client what the problem
was. These issues will be accumulated in the response by Firely Server automatically.

Any argument that is not handled will automatically be reported as such in an OperationOutcome.

Useful extension methods:

IArgument.Handled()
IArgument.Warning(string message, Issue issue)
IArgument.Error(string message, Issue issue)

Firely Server has a lot of issues predefined in Vonk.Core.Support.VonkIssues.

IVonkResponse

namespace
Vonk.Core.Context

purpose
Inspect response values set by other middleware, or set it yourself.

public interface IVonkResponse
{

Dictionary<VonkResultHeader, string> Headers { get; }
int HttpResult { get; set; }
OperationOutcome Outcome { get; }
IResource Payload { get; set; }

}

If your operation provides a response, you should:

1. Set the response code HttpResult.

2. Provide a resource in the Payload, if applicable.

3. Add an issue if something is wrong.

If you just listen in on the pipeline, you can check the values of the response. Besides that, the InteractionHandlerAt-
tribute allows you to filter on the HttpStatus of the response.

IFormatter

namespace
Vonk.Core.Context.Format

purpose
Serialize response resource in requested format to the body of the HttpContext.Response. Although
this interface is public, you should never need it yourself, since the VonkToHttp plugin takes care of
this for you.

304 Chapter 15. Firely Server Reference Documentation

Firely Server

15.2.4 Interaction Handling

In the configuration of a plugin you specify on which interaction(s) the plugin should act. That can be done with an
attribute on the main method of the service in the plugin, or with a fluent interface on IApplicationBuilder.

InteractionHandlerAttribute

namespace
Vonk.Core.Pluggability

purpose
Add an [InteractionHandler] attribute to a method to specify when the method has to be called.
You specify this by providing values that the IVonkContext should match.

Without any arguments, the method will be called for every possible interaction.

[InteractionHandler()]
public async Task DoMyOperation(IVonkContext vonkContext)

You can specify different filters, and combine them at will:

• Specific interaction(s): [InteractionHandler(Interaction = VonkInteraction.type_create |
VonkInteraction.instance_update)]

• Specific FHIR version(s) of the request: [InteractionHandler(InformationModel = VonkConstants.
Model.FhirR4)]

• Specific resource type(s): [InteractionHandler(AcceptedTypes = new["Patient",
"Observation"])]

• Specific custom operation: [InteractionHandler(Interaction = VonkInteraction.all_custom,
CustomOperation = "myCustomOperation")]. Note that the $ that is used on the url is not included in
the name of the custom operation here.

• Specific http method: [InteractionHandler(Method = "POST")]

• Specific statuscode(s) on the response: [InteractionHandler(StatusCode = new[]{200, 201})]

Now to configure your service to be a processor in the Firely Server pipeline, you use
UseVonkInteraction[Async]():

public static class MyOperationConfiguration
{
public static IApplicationBuilder UseMyOperation(this IApplicationBuilder app)
{
return app.UseVonkInteractionAsync<MyService>((svc, ctx) => svc.

→˓DoMyOperation(ctx));
}

}

15.2. Important classes and interfaces 305

Firely Server

InteractionHandler fluent interface

Because InteractionHandler is an attribute, you can only use constant values. If that is not what you want, you can
use the fluent interface in the configuration class instead. The code below shows the same filters as above, although
you typically would not use all of them together (e.g. the PUT excludes type_create).

public static class MyOperationConfiguration
{
public static IApplicationBuilder UseMyOperation(this IApplicationBuilder app)
{
return app

.OnInteraction(VonkInteraction.type_create | VonkInteraction.instance_update)

.AndInformationModel(VonkConstants.Model.FhirR4)

.AndResourceTypes(new[] {"Patient", "Observation"})

.AndStatusCodes(new[] {200, 201})

.AndMethod("PUT")

.HandleAsyncWith<MyService>((svc, ctx) => svc.DoMyOperation(ctx));
}

}

Other Handle... methods allow you to define a pre-handler (that checks or alters the request before the actual oper-
ation) or a post-handler (that checks or alters the response after the actual operation), either synchronously or asyn-
chronously.

If you have a very specific filter that is not covered by these methods, you can specify it directly with a function on the
IVonkContext that returns a boolean whether or not to call your operation.

app
.On(ctx => MyVerySpecificFilter(ctx))
.Handle...

Attention: The filter you specify is called for every request. So make sure you don’t do any heavy calculations or
I/O.

IApplicationBuilder extension methods

UseVonkInteraction<TService>(this IApplicationBuilder app, Expression<Action<<TService,
IVonkContext>> handler, OperationType operationType = OperationType.
Handler) -> IApplicationBuilder

Handle the request with the handler method when the request matches the InteractionHandler attribute on
the handler method. The OperationType may also specify PreHandler or PostHandler. If you need to do
anything lengthy (I/O, computation), use the Async variant of this method.

UseVonkInteractionAsync<TService>(this IApplicationBuilder app, Expression<Func<TService,
IVonkContext, T.Task>> handler, OperationType operationType = OperationType.
Handler) -> IApplicationBuilder

Handle the request with the asynchronous handler method when the request matches the
InteractionHandler attribute on the handler method. The OperationType may also specify PreHandler
or PostHandler.

OnInteraction(this IApplicationBuilder app, VonkInteraction interaction)→ VonkAppBuilder
Used for fluent configuration of middleware. This is one of two methods to enter the VonkAppBuilder, see

306 Chapter 15. Firely Server Reference Documentation

Firely Server

VonkAppBuilder extension methods. It requires you to choose an interaction to act on. If you need your services
to act on every interaction, choose VonkInteraction.all.

OnCustomInteraction(this IApplicationBuilder app, VonkInteraction interaction, string custom)→
VonkAppBuilder

Used for fluent configuration of middleware. This is one of two methods to enter the VonkAppBuilder, see
VonkAppBuilder extension methods. It requires you to choose an interaction to act on. This should be one of the
VonkInteraction.all_custom interactions. custom is the name of the custom interaction to act on, without
the preceding ‘$’.

VonkAppBuilder extension methods

VonkAppBuilder is used to fluently configure your middleware. It has methods to filter the requests that your middle-
ware should respond to. Then it has a couple of *Handle... methods to transform your service into middleware for
the pipeline, and return to the IApplicationBuilder interface.

AndInteraction(this VonkAppBuilder app, VonkInteraction interaction)→ VonkAppBuilder
Specify an interaction to act on.

AndResourceTypes(this VonkAppBuilder app, params string[] resourceTypes)→ VonkAppBuilder
Specify the resourcetypes to act on.

AndStatusCodes(this VonkAppBuilder app, params int[] statusCodes)→ VonkAppBuilder
Specify the statuscode(s) of the response to act on. This is mainly useful for posthandlers.

AndMethod(this VonkAppBuilder app, string method)→ VonkAppBuilder
Specify the http method (GET, PUT, etc) to act on.

AndInformationModel(this VonkAppBuilder app, string model)→ VonkAppBuilder
If your service can only act on one FHIR version, specify it with this method. Common values for model are
VonkConstants.Model.FhirR3 and VonkConstants.Model.FhirR4.

PreHandleAsyncWith<TService>(this VonkAppBuilder app, Expression<Func<TService,
IVonkContext, T.Task>> preHandler) -> IApplicationBuilder

Mark the preHandler method as a prehandler, so it will act on the IVonkContext and send it further down the
pipeline.

PreHandleWith<TService>(this VonkAppBuilder app, Expression<Action<TService,
IVonkContext>> preHandler) -> IApplicationBuilder

Synchronous version of PreHandleAsyncWith for synchronous preHandler methods.

HandleAsyncWith<TService>(this VonkAppBuilder app, Expression<Func<TService,
IVonkContext, T.Task>> handler) -> IApplicationBuilder

Mark the handler method as a hanlder, so it will act on the IVonkContext, provide a response and end the
pipeline for the request.

HandleWith<TService>(this VonkAppBuilder app, Expression<Action<TService,
IVonkContext>> handler)

Synchronous version of HandleAsyncWith for synchronous handler methods.

PostHandleAsyncWith<TService>(this VonkAppBuilder app, Expression<Func<TService,
IVonkContext, T.Task>> postHandler) -> IApplicationBuilder

Mark the postHandler method as a posthandler, so it will pass on the IVonkContext to the rest of the
pipeline, and on the way back through the pipeline inspect or modify the response. Make sure that the
VonkConfiguration order you have for this is lower than whatever action you need to post-handle.

15.2. Important classes and interfaces 307

Firely Server

PostHandleWith<TService>(this VonkAppBuilder app, Expression<Action<TService,
IVonkContext>> postHandler) -> IApplicationBuilder

Synchronous version of PostHandleAsyncWith for synchronous postHandler methods.

15.2.5 Pipeline configuration

VonkConfigurationAttribute

namespace
Vonk.Core.Pluggability

purpose
This attribute is used on a static class to make Firely Server recognize it as part of the configuration
of the processing pipeline. See Configuration classes.

properties
• Order: Determines the place in the pipeline. See The order of plugins for background.

15.2.6 Repository interfaces

ISearchRepository

Vonk.Core.Repository.ISearchRepository is central in the functioning of Firely Server. It defines all read-
access to the underlying repository, being one of Firely Server’s own database implementations or a Facade implemen-
tation.

It has a single method:

Task<SearchResult> Search(IArgumentCollection arguments, SearchOptions options);

Using ISearchRepository

1. Have it injected by the dependency injection into the class where you need it:

public MyService(ISearchRepository searchRepository)
{

_searchRepository = searchRepository;
}

Note: Implementations of ISearchRepository have a Scoped lifetime, so MyService should also be registered
as Scoped:

public IServiceCollection AddMyServices(this IServiceCollection services)
{

services.TryAddScoped<MyService>();
return services;

}

2. Prepare search arguments that express what you are looking for. Search arguments are effectively key-value pairs
as if they came from the querystring on the request. So the key must be the code of a supported Searchparameter.

308 Chapter 15. Firely Server Reference Documentation

Firely Server

var args = new ArgumentCollection(new IArgument[]
{

new Argument(ArgumentSource.Internal, ArgumentNames.resourceType, "Patient")
→˓{MustHandle = true}, // MustHandle = true is optional

new Argument(ArgumentSource.Internal, "name", "Fred") {MustHandle = true} //␣
→˓MustHandle = true is optional
}).AddCount(20);

Note: The Search implementation will in general update the arguments, especially their Status property and
the Issue if something went wrong. So be careful with reuse of arguments. Use IArgumentCollection.
Clone() if neccessary.

3. Prepare search options that guide the search. Usually you can use one of the predefined options on the
SearchOptions class.

var options = SearchOptions.Latest(vonkContext.ServerBase, vonkContext.Request.
→˓Interaction, vonkContext.InformationModel);

4. Execute the search.

var searchResult = await _searchRepository.Search(args, options);

5. Check the status of the arguments, expecially if they could not be ignored (MustHandle = true). Because this
is a common pattern, there is an extension method CheckHandled that throws a VonkParameterException if
MustHandle arguments are not handled.

try
{

args.CheckHandled("Arguments must all be handled in MyService");
}
catch (VonkParameterException vpe)
{
//report it in the vonkContext.Response.Outcome

}

6. Inspect the number of the results to check whether anything was found. If so, you can enumerate the results or
process the set as a whole, since SearchResult implements IEnumerable<IResource>.

if (searchResult.TotalCount > 0)
{
foreach(var resource in searchResult)
{ ... }

}

15.2. Important classes and interfaces 309

Firely Server

Implement ISearchRepository

Implementing ISearchRepository is only needed in a Facade.

The general pattern for implementing ISearchRepository is:

1. For each of the IArguments in the IArgumentCollection:

1. If you support the argument, translate it to a ‘where’ clause on your repository. If your backend is another
Web API, this could have the form of a piece of a querystring.

2. Call IArgument.Handled() to update its status. There is also .Warning() and .Error() when something is
wrong with the argument. If you simply don’t support the argument, you can leave the status to ‘Unhandled’.

3. Pay special attention to the _count and _skip arguments for proper paging.

2. ‘AND’ all the arguments together, e.g. forming a database query or complete querystring.

3. Issue the query to your repository and await the results (await used intentionally: this should be done asyn-
chronously).

4. For each of the resulting records or objects: map them to matching FHIR resources, either by:

1. Creating POCO’s:

var result = new Patient() { /*fill in from the source object*/ };
return result.ToIResource(); //InformationModel implied by the assembly of␣
→˓class Patient

2. or by crafting SourceNodes:

var result = SourceNode.Resource("Patient", SourceNode.Valued("id", /* id from␣
→˓source */), SourceNode.Node("meta", SourceNode.Valued("versionId", "v1"),
→˓), ...))
return result.ToIResource(VonkConstants.Model.FhirR3 /* or FhirR4 */);

5. Combine the mapped resources into a SearchResult:

return new SearchResult(resources, pagesize, totalCount, skip);

• pagesize: should be the value of the _count argument, unless you changed it for some reason.

• totalCount: total number of results, if there are more than you are returning right now.

• skip: number of results skipped in this set (if you are serving page x of y).

For a Facade on a relational database we provide a starting point with Vonk.Facade.Relational.
SearchRepository. Follow the exercise in Exercise: Build your first Facade to see how that is done.

IResourceChangeRepository

IResourceChangeRepository defines methods to change resources in the repository:

public interface IResourceChangeRepository
{

Task<IResource> Create(IResource input);
Task<IResource> Update(ResourceKey original, IResource update);
Task<IResource> Delete(ResourceKey toDelete, string informationModel);
string NewId(string resourceType);

(continues on next page)

310 Chapter 15. Firely Server Reference Documentation

Firely Server

(continued from previous page)

string NewVersion(string resourceType, string resourceId);
}

ResourceKey is a simple struct to identify a resource by Type, Id and optionally VersionId.

Using IResourceChangeRepository

You should hardly ever need to use the IResourceChangeRepository. It is used by the Create, Update, Delete and
the conditional variations thereof.

Should you need to use it, the methods are fairly straightforward.

method
Create

description
Provide an IResource having an id and versionId. These can be obtained by calling NewId and
NewVersion. The return value will contain a possibly updated IResource, if the implementation
changed or added elements. To fill in all the metadata there is a convenient extension method on
IResourceChangeRepository:

var withMetaInfo = changeRepository.EnsureMeta(resource); //Will keep␣
→˓existing id, version and lastUpdated and fill in if missing.
//EnsureMeta also exists as extension method on IResource - that uses␣
→˓Guids for id and version.
var createdResource = await changeRepository.Create(withMetaInfo);

method
Update

description
Assert that a resource exists that can be updated. If not, use Create, otherwise go for Update.

var existingKey = new ResourceKey(resourceType, resourceId);
var args = existingKey.ToArguments(true);
var args = args.AddCount(0); //We don't need the actual result - just want␣
→˓to know whether it is there.
var options = SearchOptions.Latest(vonkContext.ServerBase, VonkInteraction.
→˓type_search, InformationModel: null); //search across informationmodels,␣
→˓we expect ids to be unique.
var exists = (await searchRepository.Search(args, options)).TotalCount = 1;
→˓ //Take care of < 1 or > 1 matches

var withMetaInfo = changeRepository.EnsureMeta(resource, KeepExisting.Id);␣
→˓//Will keep existing id and provide fresh version and lastUpdated.
var updatedResource = await changeRepository.Update(existingKey,␣
→˓withMetaInfo);

method
Delete

description
Delete the resource that matches the provided key and informationModel. Returns the resource that
was deleted.

15.2. Important classes and interfaces 311

Firely Server

var existingKey = new ResourceKey(resourceType, resourceId);
var deletedResource = await changeRepository(existingKey, vonkContext.
→˓InformationModel);

method
NewId

description
Get a new Id value generated by the repository (e.g. when the repository wants to use a sequence
generator or ids in a specific format). Generally used through the extension method IResourceChan-
geRepository.EnsureMeta(IResource resource, KeepExisting keepExisting), see Create above.

method
NewVersion

description
Get a new Version value generated by the repository (e.g. when the repository wants to use a se-
quence generator or ids in a specific format). The repository may want to base the version on the
id, therefore the Id is passed as an argument. Generally used through the extension method IRe-
sourceChangeRepository.EnsureMeta(IResource resource, KeepExisting keepExisting), see Create
above.

Implement IResourceChangeRepository

Implementing IResourceChangeRepository is only needed in a Facade that wants to provide write-access to the under-
lying repository.

For all three methods, you will have to map data from FHIR resources to your internal data structures and back.

Note that you also need to implement ISearchRepository to support the Create and Update plugins and of course the
conditional variants of those.

15.2.7 Constructing bundles

In a Plugin or Facade you may need to construct a bundle from a set of resources, e.g. a SearchResult (see here). There
are two ways of doing this: with the Bundle POCO or with SourceNodes.

Bundle POCO

This is fairly straightforward. Create a new Bundle object, and fill its properties, iterating over the set of resources that
you have. The code looks like this:

using Hl7.Fhir.Model; //Either from Hl7.Fhir.Core.Stu3 or Hl7.Fhir.Core.R4

...

var searchResult = await searchRepository.Search(args, options)
var bundle = new Bundle() { Type = Bundle.BundleType.Searchset }; // Type is required

foreach (var resource in searchResult)
{

bundle.Entry.Add
{

(continues on next page)

312 Chapter 15. Firely Server Reference Documentation

Firely Server

(continued from previous page)

new BundleEntryComponent
{

Resource = resource.ToPoco<Resource>();
// fill in any other details like Request or Response.

}
}

}

//fill in details of the bundle as a whole, like Meta or Identifier.

The limitation of this is that you are bound to either STU3 or R4, and that also implies that you cannot include Custom
Resources in the bundle.

Bundle from SourceNodes

ISourceNode is from Hl7.Fhir.ElementModel and not tied to a specific FHIR version, and Firely Server can serialize
ISourceNode provided that the right StructureDefinition is available in the Administration API - which is the case for
Bundle by default.

You start by creating the Bundle itself using the class SourceNode that allows for construction of ISourceNode nodes.

using Hl7.Fhir.ElementModel;

...

var bundleNode = SourceNode.Resource("Bundle", "Bundle", SourceNode.Valued("type",
→˓"document"));

//choose type as one of the bundle types from the spec, see http://hl7.org/fhir/R4/
→˓bundle-definitions.html#Bundle.type

Then you can add elements to the bundle itself that are not in the entries of the bundle. Like an identifier:

var identifier = SourceNode.Node("identifier");
identifier.Add(SourceNode.Valued("system", "urn:ietf:rfc:3986"));
identifier.Add(SourceNode.Valued("value", Guid.NewGuid().ToString()));
bundleNode.Add(identifier);

Then you can turn this into the helper class GenericBundle that provides several helper methods on an ISourceNode
that is known to be a Bundle.

var documentBundle = GenericBundle.FromBundle(bundleNode);
documentBundle = documentBundle.Meta(Guid.NewGuid().ToString(), DateTimeOffset.Now);

Maybe you already saw an alternative way of adding the identifier in the intellisense by now:

documentBundle = documentBundle.Identifier("urn:ietf:rfc:3986", Guid.NewGuid().
→˓ToString());

Note that you always have to continue with the result of the modifying function. All these functions act on ISourceNode
and that is immutable, so you get a new instance with the changes applied as a return value.

Now you have the skeleton of the Bundle, it is ready to add entries with resources to it.

15.2. Important classes and interfaces 313

Firely Server

IResource resourceForDocument = ... ; //Get or construct a resource that is one of the␣
→˓entries of the Bundle.
documentBundle = documentBundle.AddEntry(resourceForDocument, resourceForDocument.Key().
→˓ToRelativeUri());

Other extensions methods available on GenericBundle:

public static GenericBundle Total(this GenericBundle bundle, int total)
public static GenericBundle AddLink(this GenericBundle bundle, string relation, string␣
→˓uri)
public static GenericBundle Links(this GenericBundle bundle, Dictionary<string, string>␣
→˓links)

Search result bundles

Usually you don’t need to construct a searchset bundle yourself, since the SearchService takes care of that when a
search is issued on the FHIR endpoint. But should you want to do it in a custom operation, then the methods for doing
so are at your disposal.

To help construct a bundle of type ‘searchset’, there is a special kind of bundle class SearchBundle. Create the
sourcenode for the bundle as above. Then instead of creating a GenericBundle, turn it into a SearchBundle:

var searchBundle = bundleNode.ToSearchBundle();

Now you can use various methods to add entries for matches, includes or an OperationOutcome:

//SearchBundle methods
public SearchBundle AddMatch(ISourceNode resource, string fullUrl, string score = null)
public SearchBundle AddInclude(ISourceNode resource, string fullUrl, string score = null)
public SearchBundle AddOutcome(ISourceNode outcome, string fullUrl, string score = null)

//Extension methods
public static SearchBundle ToSearchBundle(this IEnumerable<SearchInfo> searchInfos,␣
→˓string informationModel)
public static SearchBundle ToSearchBundle(this IEnumerable<ISourceNode> resources,␣
→˓string searchMode, string informationModel)
public static SearchBundle ToSearchBundle(this IEnumerable<ITypedElement> resources,␣
→˓string searchMode, string informationModel)

The SearchInfo struct essentially captures all the information that goes into an entry of a searchset bundle:

public struct SearchInfo
{
public SearchInfo(ISourceNode resource, string mode = SearchMode.match, string␣

→˓fullUrl = null, string score = null)

public string Mode { get; }
public ISourceNode Resource { get; }
public string FullUrl { get; }
public string Score { get; }

}

314 Chapter 15. Firely Server Reference Documentation

Firely Server

Using all this to turn the SearchResult returned from the ISearchRepository.Search() method into a bundle
looks like this (using the second extension method above):

var bundle = searchResult
.ToSearchBundle(SearchMode.match, vonkContext.InformationModel)
//informationModel is needed because bundle has slight differences between STU3␣

→˓and R4
.Total(searchResult.Page.TotalCount)
//Total is defined on GenericBundle
.Links(searchResult.Page.PagingLinks(vonkContext));
//Links is defined on GenericBundle

return bundle.ToIResource(vonkContext.InformationModel).EnsureMeta();

15.2.8 Access Control in Plugins and Facades

The Access Control feature is also available to users of a Firely Server Facade or Firely Server Plugins. You can use
the default implementation based on SMART on FHIR, or provide an implementation of your own.

Access control implementation

The access control engine is programmed using interfaces for which you can provide your own implementation. Be-
cause we think the model behind SMART on FHIR covers many cases, these interfaces are loosely modelled after it.
The important interfaces and class are:

Table 1: Access Control interfaces
Interface / Class Description
IAuthorization Defines whether your are allowed to read or write a type of resource. Abstraction of the

concept of a scope (like user/Observation.read) in SMART
ICompartment Confines the user to a compartment, expressed as a combination of a CompartmentDefinition

and a search argument. Abstraction of the concept of a launch context (like patient=123) in
SMART

IReadAuthorizer Calculates access control for a type of resource given an instance of IAuthorization and/or
ICompartment

IWriteAuthorizer Calculates access control for writing a new (version of a) resource given an instance of
IAuthorization and/or ICompartment

AuthorizationResult Return value of IReadAuthorizer and IWriteAuthorizer methods. It expresses whether you
are authorized at all, and if so - under which conditions. These conditions are expressed as
search arguments.

IReadAuthorizer

Provides two methods to check authorization for reading types of resources.

• AuthorizeRead

• AuthorizeReadAnyType

The latter is only used if a system wide search is performed, without a _type parameter. In that case it is not efficient
to call the first method for every supported resourcetype.

The input of these operations is an IAuthorization and an ICompartment. The result is an AuthorizationResult. With
this class you can return:

15.2. Important classes and interfaces 315

Firely Server

• simply true or false

• extra search arguments to add to the search query in order to confine the search to those resources the user is
allowed to read.

The AuthorizationResult Filters member is a collection of IArgumentCollections. Arguments within a collection will
be AND’ed together. Multiple collections will be OR’ed together.

IWriteAuthorizer

Provides one method to assess whether the user is allowed to write a resource. Input is again IAuthorization and
ICompartment, but also IResource - the resource that is to be written - and an Uri called ‘serverBase’. The ‘serverBase’
parameter is primarily provided because it is required to perform a search on the ISearchRepository interface. The
IAuthorization instance can be used to decide whether the user is allowed to write resources of the given resourcetype
at all. The ICompartment can be used to search in the database whether the to-be-written resource is linked to the
current compartment.

15.3 Architecture

15.3.1 Pipeline and middleware components

Firely Server is built upon ASP.NET Core and its modular setup of a pipeline of middleware. It also leverages the
dependency injection pattern that is central to ASP.NET Core. If you are not familiar with these concepts, please
review them first.

Firely Server’s core plugins provide middleware components that handles the interactions of the FHIR RESTful API.
These components are placed in the pipeline. The pipeline starts with a few general components that interpret the
incoming http request and determine which interaction is being called. This information is fed to the rest of the pipeline
as the Request property of an IVonkContext object, analogous to the HttpContext and its Request property of ASP.NET
Core itself. The IVonkContext also provides the Response property that is used to communicate the status, resource
and/or OperationOutcome resulting from the interaction. On the way back through the pipeline the counterparts of
the interpreting middleware translate the IVonkContext Response back to an http response, conforming to the FHIR
specification. The rest of the pipeline consists of middleware components that each fulfill one of the interactions.
So there is one for read, one for create, for search et cetera. These components are just regular ASP.Net Core
Middleware components, except that they have access to the IVonkContext, and act on that.

Adding custom middleware

Using Firely Server Components you can add your own middleware anywhere in the pipeline. It can be standard
ASP.NET Core middleware - having nothing to do with FHIR - or middleware acting on the IVonkContext, e.g. to
implement a custom operation. Firely Server also provides convenience methods to register your middleware as one
that handles a FHIR interaction, including attributes to declare for which interaction and which resource types your
middleware should be invoked. This is explained in Firely Server Plugins.

316 Chapter 15. Firely Server Reference Documentation

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
http://www.hl7.org/implement/standards/fhir/http.html

Firely Server

15.3.2 Repository interfaces

Many of the FHIR interactions require access to a repository of resources. E.g. createmust be able to store a resource,
whereas search must be able to query resources and retrieve the results. In Firely Server, the middleware components
that implement these interactions access the repository through interfaces. There are two different interfaces for differ-
ent parts of the FHIR RESTful API.

IChangeRepository //for create, update and delete
ISearchRepository //for all types of search, read and history

In many scenarios, read-only access is sufficient, and you only need to implement the ISearchRepository. In that
implementation you can choose which of the search parameters you want to support, and whether to expose versions
and deleted resources.

These interfaces enable you to implement a Firely Server Facade. And they enable us to support database engines as
diverse as MongoDB, SQL Server and in-memory.

Search

The FHIR RESTful Search is the most complex part of the FHIR RESTful API. Firely Server is capable of interpreting
the search and translating it to small query-bits irrespective of the actual repository implementation. When imple-
menting the ISearchRepository you get full control over which parameters you support and how you support them.
On the method ISearchRepository.Search(), you just get the list of arguments that make up the search, as an
IArgumentCollection. If you decide to act on these raw arguments directly, you can. But if you want Firely Server
to interpret the search, you can use the QueryBuilderContext.CreateQuery method that will decompose the IAr-
gumentCollection, interpret and validate every argument in it and then call into the IRepoQueryFactory.Filter or
IRepoQueryFactory.ResultShape method for each of the arguments.

So the Filter method is called with interpreted search arguments. E.g. identifier=abc will be provided as (in
pseudocode) Filter("identifier", TokenValue{code = "abc", noSystem = true}). If no search param-
eter is defined for an argument, you still get the change to handle it. E.g. myspecialparameter=qyz will be provided
as Filter("myspecialparameter", RawValue{ value = "qyz" }). This allows for easy extensibility without
defining your own SearchParameter resources, and is suitable for adding parameters that map to non-FHIR structures
in your backend system. Note however that Firely Server also supports Custom Search Parameters.

The ResultShape method is called when an argument is recognized as a ‘Search result parameter’, like _sort or
_include.

15.3.3 Capabilities

A FHIR server has to express its capabilities in a CapabilityStatement, available on the /metadata endpoint. Firely
Server’s capabilities are defined by the middleware components that make up its pipeline. Every component knows
what interaction it adds to the capabilities. Therefore, we keep that information close to the component itself. Typically,
every component has an implementation of ICapabilityStatementContributor, in which it gets access to the
ICapabilityStatementBuilder. The latter provides methods to add information to the CapabilityStatement without
having to worry about what is already added by other components or the order of execution.

15.3. Architecture 317

http://www.hl7.org/implement/standards/fhir/http.html
http://www.hl7.org/implement/standards/fhir/search.html
http://www.hl7.org/implement/standards/fhir/http.html
http://www.hl7.org/implement/standards/fhir/search.html#2.21.1.1

Firely Server

15.4 Dependencies of Firely Server and their licenses

Firely Server is mainly built using libraries from Microsoft .Net Core and ASP.NET Core, along with a limited list of
other libraries. This is the full list of direct depencies that Firely Server has on other libraries, along with their licenses.

This list uses the NuGet package names (or prefixes of them) so you can easily lookup further details of those packages
on NuGet.org if needed.

1. Microsoft.AspNetCore.* - Apache 2.0

2. Microsoft.ApplicationInsights.* - MIT

3. Microsoft.Bcl.AsyncInterfaces - MIT

4. Microsoft.EntityFrameworkCore.* - Apache 2.0

5. Microsoft.Extensions.* - MIT

6. Microsoft.AspNet.WebApi.Client - MS-.NET-Library License

7. System.Interactive.Async - MIT

8. Microsoft.Data.SqlClient - MIT

9. Microsoft.CSharp - MIT

10. System.Interactive.Async - MIT

11. System.Text.Json - MIT

12. System.* - MS-.NET-Library License

13. NETStandard.Library - MIT

14. NewtonSoft.Json - MIT

15. IdentityModel.* - Apache 2.0

16. IdentityServer4.AccessTokenValidation - Apache 2.0

17. IPNetwork2 - BSD 2-Clause “Simplified” License

18. Quartz - Apache 2.0

19. Serilog(.*) - Apache-2.0

20. LinqKit.Microsoft.EntityFrameworkCore - MIT

21. Hl7.Fhir.* - Firely OSS license (see below)

22. Fhir.Metrics - as Hl7.Fhir

23. Simplifier.Licensing - as Hl7.Fhir

24. Dapper - Apache 2.0

25. SqlKata.* - MIT

MongoDB:

1. MongoDB.* - Apache 2.0

For unittesting:

1. XUnit - Apache 2.0

2. Moq - BSD 3

3. FluentAssertions - Apache 2.0

318 Chapter 15. Firely Server Reference Documentation

https://www.nuget.org
https://go.microsoft.com/fwlink/?LinkId=329770
https://go.microsoft.com/fwlink/?LinkId=329770

Firely Server

4. Microsoft.NETCore.Platforms - MIT

5. Microsoft.NET.Test.Sdk - MS-.NET-Library License

6. System.Reactive - MIT

7. coverlet.collector - MIT

8. WireMock.Net - Apache 2.0

15.4.1 Firely OSS License

Firely Server relies on the reference .NET FHIR library: Hl7.Fhir.*, also created and maintained by Firely. The license
is this (as stated in the LICENSE file:

Copyright (c) 2013-2020, HL7, Firely (info@fire.ly), Microsoft Open Technologies and contributors. See the file
CONTRIBUTORS for details

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Firely nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

15.4. Dependencies of Firely Server and their licenses 319

https://go.microsoft.com/fwlink/?LinkId=329770
https://github.com/FirelyTeam/firely-net-sdk/blob/master/LICENSE
mailto:info@fire.ly
https://github.com/FirelyTeam/firely-net-sdk/blob/master/contributors.md

Firely Server

320 Chapter 15. Firely Server Reference Documentation

CHAPTER

SIXTEEN

TOOLS

This section contains documentation about tools that can improve your Firely Server experience.

16.1 Firely Server Ingest (FSI)

Firely Server Ingest (FSI) is a CLI application designed to optimize massive resource ingestion into a Firely Server
instance. In contrast to resource ingestion by sending HTTP requests to a running Firely Server instance, this tool writes
data directly to the underlying FS database which increases the throughput significantly.

The tool supports ingestion into SQL Server and MongoDB databases.

16.1.1 Installation

To install the tool, you first need to have .NET Core SDK v6.x installed on your computer. You can download it here.
Once it is installed, execute the following command:

dotnet tool install --global Firely.Server.Ingest

The command above will install FSI from this NuGet package.

Note: Make sure that the dotnet tools directory is added to your path, this makes it possible to run the fsi command
from any directory.

• Please find more information on where globally installed tools are located in this article.

• For Linux and Mac, make sure you add your .profile or .bash_profile to your path.

16.1.2 General usage

Attention:
• Firely Server instances targeting the same database will be impacted severely by the workload that FSI puts

on the database. We advise to stop the Firely Server instances while the import is performed.

• Only one instance of FSI per database should be run at a time. FSI can utilize all the cores on the machine
it is run on, and insert data over several connections to the database in parallel. Multiple instances would
probably cause congestion in the database.

321

https://dotnet.microsoft.com/en-us/download
https://www.nuget.org/packages/Firely.Server.Ingest/
https://docs.microsoft.com/en-us/dotnet/core/tools/global-tools#install-a-global-tool

Firely Server

Prerequisites

The tool requires that the target database already exists and contains all required indexes and tables (for SQL Server).
If you don’t have a database with the schema yet, you first need to run the Firely Server at least once as described in the
articles Using SQL server and Using MongoDB.

Input files formats

FSI supports the following input file formats:

• FHIR collection bundles stored in *.json files, and

• *.ndjson files where each line contains a separate FHIR resource in JSON format.

After the import

After ingesting massive amount of data, it is important to make sure the SQL Server indexes are in good shape. You
can read more on this topic here: Index Maintenance.

16.1.3 Arguments

The execution of FSI can be configured using input parameters. These parameters can be supplied either as CLI
arguments or specified in the file appsettings.instance.json which must be created in the same directory as the
fsi executable.

If you want to specify input parameters in the file, you can use the snippet below as a base for your appsettings.
instance.json. In this case, you need to update the values that you want to set yourself and delete all other records.

{
"source": "./fsi-source", //valid directory
"limit": -1,
"fhirVersion": "R4",
"license": "C:\\data\\deploy\\vonk\\license\\performance-test-license.json",
"updateExistingResources": true,
"useUcum": false,
"databaseType": "SQL",
"haltOnError": false,

"sqlserver": {
"connectionString": "<connectionstring to the Firely Server SQL Server database>",
"saveParallel": 2,
"queryExistenceParallel": 4,
"batchSize": 500,
"commandTimeOut": 60, //seconds

},

"mongodb": {
"entryCollection": "vonkentries",
"connectionString": "<connectionstring to the Firely Server MongoDb database>",
"saveParallel": 2,
"queryExistenceParallel": 4,
"batchSize": 500

},
(continues on next page)

322 Chapter 16. Tools

Firely Server

(continued from previous page)

"workflow": { //-1 = unbounded
"readParallel": 3,
"readBufferSize": 200,
"metaParallel": 1,
"metaBufferSize": 50,
"typeParallel": 4,
"typeBufferSize": 50,
"indexParallel": -1, //this is usually the most time consuming process - give it as␣

→˓much CPU time as possible.
"indexBufferSize": 50,
"maxActiveResources": 15000

}
}

Supported arguments

CLI argument Appsettings parameter name Required Description
--settings <settingsJsonFile> Custom settings json file
-f, --fhir-version <R3|R4> fhirVersion FHIR version of the input
-s, --source <source> source yes Input directory for work (this directory is visited recursively including all the subdirectories)
-l, --limit <limit> limit Limit the number of resources to import. Use this for testing your setup
--license <license> license yes Firely Server license file
--update-existing-resources <true|false> updateExistingResources When true, a resource is updated in the database if it already exists and a history record is created. Otherwise, an existing resource gets skipped
--useUcum <true|false> useUcum When true, any quantitative data will be canonicalized to UCUM. Otherwise, only the original value and unit will be kept
--dbType <MongoDb|SQL> databaseType Specifies the target database type
--haltOnError <true|false> haltOnError When true, stop application on single error. Default = false.
--mongoCollection <mongoCollection> mongodb/entryCollection Collection name for entries
--mongoConnectionstring <connectionstring> mongodb/connectionString yes Connection string to Firely Server MongoDb database
--mongoPar <mongoPar> mongodb/saveParallel The number of batches to save in parallel. Depends on your bandwidth to MongoDb and its processing power
--mongoExistQryPar <mongoExistQryPar> mongodb/queryExistenceParallel The number of parallel threads querying the DB to check whether a resource exists (only when --update-existing-resources is set to false)
--mongoBatch <mongoBatch> mongodb/batchSize The number of resources to save in each batch
-c, --connectionstring <connectionstring> sqlServer/connectionString yes Connection string to Firely Server SQL Server database
--sqlPar <sqlPar> sqlServer/saveParallel The number of batches to save in parallel. Depends on your bandwidth to SQL Server and its processing power
--sqlBatch <sqlBatch> sqlServer/saveBatchSize The number of resources to save in each batch. SQL Server must be able to process it within the CommandTimeout. It is recommended to set this value to at least 500 for optimal performance
--sqlTimeout <sqlTimeout> sqlServer/commandTimeOut The time SQL Server is allowed to process a batch of resources
--sqlExistQryPar <sqlExistQryPar> sqlserver/queryExistenceParallel The number of parallel threads querying the DB to check whether a resource exists (only when --update-existing-resources is set to false).
--sqlIndexes sqlServer/liftIndexes Experimental! Removes all the indexes before the import and re-applies them afterwards
--readPar <readPar> workflow/readParallel Number of threads to read from the source. Reading is quite fast so it need not be high
--readBuffer <readBuffer> workflow/readBufferSize Number of resources to buffer after reading
--metaPar <metaPar> workflow/metaParallel Number of threads to assign metadata. Should be higher than ReadParallel
--metaBuffer <metaBuffer> workflow/metaBufferSize Number of resources to buffer for assigning metadata
--typePar <typePar> workflow/typeParallel Number of threads to add type information. Should be higher than ReadParallel
--typeBuffer <typeBuffer> workflow/typeBufferSize Number of resources to buffer for adding type information
--indexPar <indexPar> workflow/indexParallel Number of threads to index the search parameters. This is typically the most resource intensive step and should have the most threads
--indexBuffer <indexBuffer> workflow/indexBufferSize Number of resources to buffer for indexing the search parameters
--maxActiveRes <maxActiveRes> workflow/maxActiveResources Maximum number of actively processed resources. Reduce the value to reduce memory consumption
--version Show version information
-?, -h, --help Show help and usage information

16.1. Firely Server Ingest (FSI) 323

Firely Server

16.1.4 Examples

Specify a custom settings file /path/to/your/custom/settings/appsettings.instance.json.

fsi --settings ./path/to/your/custom/settings/appsettings.instance.json

Note: If --settings is omitted, FSI searches following folders sequentially and tries to find appsettings.
instance.json. The first occurrence will be used if FSI finds one, otherwise the default appsettings.json will
be used.

• Current launched folder e.g. C:\Users\Bob\Desktop

• FSI installation folder e.g. C:\Users\Bob\.dotnet\tools

• FSI installation dll folder e.g. C:\Users\Bob\.dotnet\tools\.store\firely.server.ingest\
version\firely.server.ingest\version\tools\net6.0\any

Run the import for files located in directory /path/to/your/input/files and its subdirectories using license file
/path/to/your/license/fsi-license.json targeting the database defined by the connection string. In case a resource being
imported already exists in the target database, it gets skipped.

fsi \
-s ./path/to/your/input/files \
--license /path/to/your/license/fsi-license.json \
-c 'Initial Catalog=VonkData;Data Source=server.hostname,1433;User ID=username;
→˓Password=PaSSSword!' \
--update-existing-resources false

Same as above but if a resource being imported already exists in the target database, it gets updated. The old resource
gets preserved as a historical record.

fsi \
-s ./path/to/your/input/files \
--license /path/to/your/license/fsi-license.json \
-c 'Initial Catalog=VonkData;Data Source=server.hostname,1433;User ID=username;
→˓Password=PaSSSword!'

Same as above but targeting a MongoDB database.

fsi \
--dbType MongoDb
-s ./path/to/your/input/files \
--license /path/to/your/license/fsi-license.json \
--mongoConnectionstring 'mongodb://username:password@localhost:27017/vonkdata'

324 Chapter 16. Tools

Firely Server

16.1.5 Monitoring

Logs

When importing the data, it is handy to have the logging enabled, as it would capture any issues if they occur. By
default, the log messages are written both to the console window and to the log files in the %temp% directory.

You can configure the log settings the same way as you do for Firely Server: Log settings.

Performance counters

You can get insights into the tool performance by means of performance counters. There are many ways to monitor the
performance counters. One of the options is using dotnet-counters.

To monitor the counters for FSI, you can execute the following command:

dotnet-counters monitor --counters 'System.Runtime','FSI Processing' --process-id
→˓<process_id>

where <process_id> is the PID of the running FSI tool.

Note: If you think the ingestion process is going too slow for your amount of data and the hardware specifications,
please contact us for advice.

16.1.6 Known issues

• FSI does not support scenarios where resources of different FHIR versions are stored in the same database;

• When importing data from large *.ndjson files, the memory consumption may be quite high.

• When importing STU3 resources, the field Patient.deceased will always be set to true if it exists. This is
caused by an error in the FHIR STU3 specification. In case you would like to use FSI with STU3 resources,
please contact us.

16.1.7 Licensing

The application is licensed separately from the core Firely Server distribution. Please contact Firely to get the license.

Your license already permits the usage of FSI if it contains http://fire.ly/vonk/plugins/bulk-data-import.

16.1.8 Release notes

Release 1.3.0

• Add configuration haltOnError. When true, the FSI will be stopped on a single error. Otherwise, it will log
error and continue.

• Changed the serialization format of decimal from string to use the native decimal type in MongoDB to improve
performance.

• Bugfix: Fixed Money.currency indexing for FHIR STU3 and R4

16.1. Firely Server Ingest (FSI) 325

https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters

Firely Server

Release 1.2.0

• Ability to provide a path to a custom appsettings.json file via a command-line argument (see examples
above)

• Bugfix: ensure FSI uses all available values from the SQL PK-generating sequences when inserting data to the
vonk.entry and component tables

Release 1.1.0

• Feature: added support for MongoDb!

• Feature: added support for performance counters using dotnet-counters. See Performance counters on how to
setup and use dotnet-counters.

• FSI has been upgraded to .NET 6. To install the tool, you first need to have .NET Core SDK v6.x installed on
your computer. See Installation for more information.

• The Firely .NET SDK that FSI uses has been upgraded to 3.7.0. The release notes for the SDK v3.7.0 can be
found here.

• Multiple smaller fixes to improve reliability and performance of the tool.

Release 1.0.0

• First public release

• Performance: optimized memory consumption (especially, when reading large *.ndjson files)

• Feature: quantitative values can be automatically canonicalized to UCUM values (see –useUcum CLI option)

• Multiple smaller fixes to improve reliability and performance of the tool

326 Chapter 16. Tools

https://github.com/FirelyTeam/firely-net-sdk/releases

CHAPTER

SEVENTEEN

CONTACT US

For questions, feedback, or consultancy for Firely Server, please send an e-mail to server@fire.ly. We look forward to
hearing from you!

327

mailto:server@fire.ly

Firely Server

328 Chapter 17. Contact us

INDEX

A
Add()

built-in function, 297, 299
AddIf()

built-in function, 297, 299
AddIfNotExists()

built-in function, 297, 299
AddOrReplace()

built-in function, 298
AddParent()

built-in function, 300
AddTreePath()

built-in function, 300
AndInformationModel()

built-in function, 307
AndInteraction()

built-in function, 307
AndMethod()

built-in function, 307
AndResourceTypes()

built-in function, 307
AndStatusCodes()

built-in function, 307
AnnotateWithSourceNode()

built-in function, 299

B
built-in function

Add(), 297, 299
AddIf(), 297, 299
AddIfNotExists(), 297, 299
AddOrReplace(), 298
AddParent(), 300
AddTreePath(), 300
AndInformationModel(), 307
AndInteraction(), 307
AndMethod(), 307
AndResourceTypes(), 307
AndStatusCodes(), 307
AnnotateWithSourceNode(), 299
Cache(), 299
Child(), 298, 300

ChildString(), 298, 300
DefinitionSummary(), 300
ForceAdd(), 298
ForcePatch(), 299
ForcePatchAt(), 299
GetParent(), 300
GetTreePath(), 300
OnCustomInteraction(), 307
OnInteraction(), 306
Patch(), 298
Relocate(), 299
Remove(), 298
RemoveEmptyNodes(), 298
Rename(), 299
Revalue(), 299
SelectNodes(), 298
SelectText(), 298

C
Cache()

built-in function, 299
Child()

built-in function, 298, 300
ChildString()

built-in function, 298, 300

D
DefinitionSummary()

built-in function, 300

F
ForceAdd()

built-in function, 298
ForcePatch()

built-in function, 299
ForcePatchAt()

built-in function, 299

G
GetParent()

built-in function, 300
GetTreePath()

329

Firely Server

built-in function, 300

O
OnCustomInteraction()

built-in function, 307
OnInteraction()

built-in function, 306

P
Patch()

built-in function, 298

R
Relocate()

built-in function, 299
Remove()

built-in function, 298
RemoveEmptyNodes()

built-in function, 298
Rename()

built-in function, 299
Revalue()

built-in function, 299

S
SelectNodes()

built-in function, 298
SelectText()

built-in function, 298

330 Index

	Overview of Firely Server, Plugins and Facades
	Framework
	Complete Server
	Plugins
	Facades

	Getting Started
	Configuration
	Running the server

	Release notes Firely Server
	Older Vonk Release notes
	Release 2.2.0
	Database
	Features
	Fix

	Release 2.1.0
	Database
	Features
	Fix

	Release 2.0.1 hotfix
	Fix

	Release 2.0.0 final
	Database
	Fix
	Feature
	Plugin and Facade API

	Release 2.0.0-beta2
	Fix

	Release 2.0.0-beta
	Database
	Fix
	Feature
	Plugin and Facade API

	Release 1.1.0
	Database
	Feature
	Fix
	Supported Plugins

	Release 1.0.0
	Release 0.7.4.0
	Database
	Fix
	Feature

	Release 0.7.3.0
	Fix

	Release 0.7.2.1
	Fix

	Release 0.7.2.0
	Database
	Features and fixes

	Release 0.7.1.1
	Fix

	Release 0.7.1.0
	Database
	Facade
	Features and fixes

	Release 0.7.0.0
	Database
	Facade
	Features and fixes

	Release 0.6.5.0
	Database
	Facade
	Features and fixes

	Release 0.6.4.0
	Database
	Facade
	Features and fixes
	Documentation

	Release 0.6.2.0
	Database
	Features and fixes

	Release 0.6.1.0
	Release 0.6.0.0
	Database
	Features and fixes
	Documentation

	Release 0.5.2.0
	Features and fixes
	Facade

	Release 0.5.1.1
	Facade

	Release 0.5.0.0
	Database
	Features and fixes

	Release 0.4.0.1
	Database
	Features and fixes

	Release 0.3.3.0
	Hosting
	Database
	Features and fixes

	Release 0.3.2.0
	Release 0.3.1.0
	Release 0.3.0.0

	Security notifications for Firely Server
	January 2021
	July 2020
	September 2019
	January 2019
	April 2018

	Upgrading Firely Server
	Public Endpoint Announcement 8 July 2021
	Release 4.9.2, August 24th, 2022
	Fix

	Release 4.9.1, August 1th, 2022
	Fix
	Feature

	Release 4.9.0, July 6th, 2022
	Security
	Database
	Fix
	Feature
	Performance

	Release 4.8.2, May 10th, 2022
	Feature
	Fix

	Release 4.8.1, Mar 5th, 2022
	Plugins
	Feature

	Release 4.8.0, Mar 21st, 2022
	Plugins
	Database
	Performance
	Feature
	Fix
	Security

	Release 4.7.1, Feb 15th, 2022
	Fix

	Release 4.7.0, Feb 1st, 2022
	Feature
	Plugins
	Logging improvements
	Fix
	Other

	Release 4.6.2, Dec 23rd, 2021
	Fix

	Release 4.6.1, Dec 15th, 2021
	Fix

	Release 4.6.0, Nov 18th, 2021
	Database
	Features
	Logging improvements
	Fix
	Other

	Release 4.5.1
	Database
	Fix

	Release 4.5.0
	Database
	Security
	Fix
	Feature
	Documentation
	Plugins

	Release 4.5.0-beta
	Fix
	Feature
	Plugin and Facade

	Release 4.4.0
	Database
	Fix
	Plugin and Facade

	Release 4.3.0
	Database
	Feature
	Fix

	Release 4.2.1 hotfix
	Database
	Fix

	Release 4.2.0
	Database
	Feature
	Fix

	Release 4.1.3 hotfix
	Fix

	Release 4.1.2 hotfix
	Fix

	Release 4.1.1 hotfix
	Feature
	Fix

	Release 4.1.0
	Database
	DevOps
	Features
	Fixes
	Plugin and Facade

	Release 4.0.0
	Features
	Fixes
	Plugin and Facade

	Release 3.9.3 hotfix
	Database
	Fix

	Release 3.9.2 hotfix
	Fix

	Release 3.9.1 hotfix
	Fix

	Release 3.9.0
	Features
	Fixes

	Release 3.8.0
	Database
	Features
	Fixes

	Release 3.7.0
	Database
	Features
	Fixes

	Release 3.6.1
	Features
	Plugins

	Release 3.6.0
	Database
	Feature
	Fix
	Plugins

	Release 3.5.0
	Feature
	Fix
	Plugins & Facade

	Release 3.4.0
	Feature
	Fix

	Release 3.3.0
	Feature
	Fix
	Plugins & Facade

	Release 3.2.1
	Fix

	Release 3.2.0
	Database
	Fix
	Feature
	Plugin and Facade API

	Release 3.1.3 hotfix
	Fix

	Release 3.1.0
	Fix
	Feature
	Plugin and Facade API

	Release 3.0.0
	Database
	Feature
	Fix
	Plugin and Facade API

	Release 3.0.0-beta2
	Database
	Feature
	Fix
	Plugin and Facade API
	Examples

	Release 3.0.0-beta1
	Database
	Feature
	Fix
	Plugin and Facade API
	Examples
	Known to-dos

	How to upgrade Firely Server?
	Upgrading Firely Server
	Using the binary distribution
	Using Docker

	Upgrading Plugins
	Upgrading Facades
	Migrations
	MongoDB

	Firely Server Roadmap
	2022
	Q2
	Q3
	Q4

	Frequently asked questions
	Conflicting resources upon import
	Searchparameter errors for composite parameters
	.NET SDK not found
	Homepage takes long to load

	Configuring Firely Server
	Firely Server settings
	Hierarchy of settings
	Changing the settings
	Settings after first install
	Settings after update
	Commenting out sections

	Log of your configuration
	Administration
	License
	Repository
	Memory
	MongoDB
	SQL
	SQLite

	http and https
	Validation
	Search and History
	Batch and transaction
	Protect against large input
	SearchParameters and other Conformance Resources
	Cache of Conformance Resources
	Reindexing for changes in SearchParameters
	Restrict supported resources and SearchParameters
	Enable or disable interactions
	Subscriptions
	Information model
	Patient Everything Operation
	FHIR Capabilities
	History size
	Configuring the Firely Server Pipeline

	Firely Server settings with Environment Variables
	Environment Variables for appsettings
	Arrays in Environment Variables

	Log settings with Environment Variables
	Audit log settings with Environment Variables
	Changing Environment Variables on Windows

	Configure the Administration API
	Choosing your storage
	Limited access

	Conformance Resources
	Import of Conformance Resources
	Retain the import history
	Running imports with multiple instances
	Default Conformance Resources
	Load Conformance Resources from disk
	Load Conformance Resources from simplifier.net
	Get a FHIR endpoint for a Simplifier project

	Load Conformance Resources on demand
	Manage Conformance Resources with the Administration API
	Example

	Validating incoming resources
	Parsing
	Validation
	Allow for specific profiles
	Upgrading from < 2.0

	Using the In-Memory storage
	Using the In-Memory storage for the Administration API database

	Using MongoDB
	Using MongoDB for the Administration API database
	MongoDB Transactions
	Tips and hints for using MongoDb for Firely Server

	Using SQL server
	Have Firely Server create your database
	Create a database and users by script, and have Firely Server create the schema
	Run schema migrations manually
	Overview of permissions

	Using SQLite
	Prefer SQLite for Firely Server Administration
	Settings for using SQLite for Firely Server Data
	Settings for using SQLite for Firely Server Administration
	Administration import history in SQLite

	Configure http and https
	Changing the port number
	Changing from http to https

	Cross Origin Resource Sharing (CORS)
	Log settings
	Changing the log event level
	Changing the sink
	Console
	File
	Application Insights
	Seq

	Database details
	SQL query parameter logging

	Firely Server deployment options
	Using Firely Server on Docker
	Getting started
	Running a Docker Firely Server in SQLite mode
	Adjust settings when running in a Docker container
	appsettings.instance.json
	logsettings.instance.json
	Powershell

	Mounting a your custom plugins folder into the container
	Spinning up with a docker-compose file

	Running Docker with a SQL Server container
	Running Docker with a SQL Server on host
	Run Docker with a MongoDB container
	Providing license via an environment variable

	Using Firely Server on Kubernetes with a Helm chart
	Firely Server deployment on Azure Web App Service
	Getting started
	Deployment
	Change database
	More information

	Yellow Button - Firely Server for your Simplifier project
	Prerequisites
	Getting the server
	Running the server
	Common errors and mistakes
	Error messages
	Configuration checks

	Using the server
	Your project in progress
	Further steps

	Deploy Firely Server on a reverse proxy
	Why
	With IIS
	With Nginx
	Deploy Firely Server on IIS
	Prerequisites
	Create Website in IIS
	Configuration
	SQL
	Extra

	Deploy Firely Server on Nginx on Linux
	About Nginx
	Prerequisites
	Start Kestrel Firely Server
	Configure Nginx as a reverse proxy
	Configuration

	Using X-Forwarded-Host header

	Set up an Identity Provider
	About Identity Providers and Firely Server
	An Identity Provider for testing
	Instructions
	Configuration
	Client
	Users
	Alice
	Bob

	Access Control Tokens with Postman
	Performance of Firely Server
	Performance of Firely Server
	About Performance
	Performance variables
	Firely Server Configuration
	Repository
	Prevalidation
	Search Parameters
	Pipeline

	Platform
	Usage patterns

	Testing performance yourself
	Variables
	Requests
	What to measure?
	Data
	Test framework

	Available performance figures
	Firely Server performance test setup
	Test results

	SQL Server Guidelines
	Memory Settings
	Disk Configuration
	TempDB
	Data & Log files

	Backup Maintenance Plan
	Index Maintenance
	SQL Server Statistics

	Security
	Access control and SMART
	Concepts
	Identification and Authentication
	Authorization
	Access Control Engine
	Custom Authentication
	Other forms of Authorization
	Configuration
	Compartments
	Tokens
	Azure Active Directory
	Access Control Decisions
	Testing

	Features
	FHIR RESTful API
	FHIR Versions
	Create, read, update, patch, delete
	Configuration
	Limitations on CRUD

	Versioning
	Search
	Sorting
	Limitations on search

	History
	Configuration
	Limitations on history

	Batch
	Transaction
	Capabilities
	Document endpoint
	Not supported interactions

	Bulk Data Export
	Appsettings
	$export
	System
	Patient
	Group

	$exportstatus
	$exportfilerequest
	Facade
	ISystemBulkDataExportRepository
	IPatientBulkDataExportRepository
	IGroupBulkDataExportRepository
	ISystemBulkDataExportRepository

	Patient $everything
	Description
	Configuration
	License

	$lastN Observations
	Description
	Appsettings
	Examples
	Fetch the last 3 results for all vitals for a patient
	Fetch the last laboratory results for a patient
	Get the most recent Observations in category vital-signs conducted before January 1, 2015
	Fetch the last 3 body weight and body height measurements for a patient

	License

	Custom Operations
	Validation
	Validate on the system level
	Validate on the ResourceType level
	Validate an instance from the database
	Precondition
	Limitations

	Snapshot generation
	Precondition

	$meta

	Custom Resources
	What to use them for?
	Register the definition
	Use a resource
	Search parameters on a custom resource

	Terminology services
	Terminology Integration
	Operations
	ValueSet $validate-code
	ValueSet $expand
	CodeSystem $lookup
	CodeSystem $find-matches / $compose
	CodeSystem $subsumes
	ConceptMap $closure
	ConceptMap $translate
	Configuration

	Pipeline
	Options
	License

	Custom Search Parameters
	Configure Search Parameters
	Re-indexing for new or changed SearchParameters
	Reindexing and FHIR versions
	Rebuild the whole search index
	Rebuild the search index for specific searchparameters
	Re-index Configuration

	Limitations

	Errata to the specification
	Subscriptions
	FHIR versions
	Channels
	Configuration

	Auditing
	Filtering configuration
	Audit log file configuration
	File
	Seq
	Audit Log reliability and performance considerations

	AuditEvent logging

	Reset the database
	Preloading resources
	Multiple versions of FHIR
	Requests
	Conformance resources
	Running a single version
	Running different versions on different endpoints
	Response Content-Type

	Support for R5 (experimental!)

	HIPAA compliance
	164.312(a)(1) Standard: Access control
	164.312(c)(1) Standard: Integrity
	164.312(d) Standard: Person or entity authentication
	164.312(a)(2)(i) Unique user identification
	164.312(b) Standard: Audit control
	164.312(e)(1, 2) Standard: Transmission security
	164.312(e)(2)(ii) Encryption
	164.312(a)(2)(ii) Emergency access procedure
	164.312(a)(c) Implementation specification: Mechanism to authenticate electronic protected health information

	$erase resources
	Description
	Examples

	Appsettings
	AuditEvents
	License

	Compliance with national ImplementationGuides and certification programs
	US CORE
	Known Limitations
	Test Data

	Nictiz
	Known Limitations
	Test Data

	Firely Server Administration API
	Functions
	Configuration
	Database

	Firely Server Plugins
	Configure the pipeline
	Configuration classes
	Register a service in your plugin

	Detailed logging of loading plugins
	The order of plugins
	Inspect order numbers in use
	Minimum order
	Registering services
	Registering middleware

	Order collisions
	Handlers and pre- and posthandlers
	Prehandler
	Posthandler

	Important classes and interfaces
	Template for a plugin
	Returning non-FHIR content from a plugin
	Custom authorization plugin

	Firely Server Plugin example - Create a new landing page
	Create a new ASP.NET Core web application
	Add Firely Server Package
	Adjust project file
	Create the configuration class
	Deploy and Configure
	Run and admire

	Firely Server Plugin example - $document operation
	BinaryWrapper plugin
	Description
	Configuration
	Release notes
	Version 0.3.0
	Version 0.2.0
	Version 0.1.0

	Convert plugin
	Description
	Configuration
	Release notes
	Version 0.2.0
	Version 0.1.0

	Firely Server Facade
	Facade setup configuration
	Provide a plugin to Firely Server

	Exercise: Build your first Facade
	Git repository Vonk.Facade.Starter

	Prerequisites and Preparations
	Installing the Firely Server
	Preparing the database

	Starting your project
	Create new project
	Add Firely Server Packages

	Mapping the database
	Reverse engineer the database model
	Clean up generated code
	Create your first mapping

	Enable Search
	1. Create a query
	Adding classes for the query
	Adding a constructor
	Deciding on a FHIR version
	Handling the search request
	IFilterValue implementations

	2. Get the data and map to FHIR
	Finalizing search
	1. Add configuration class
	2. Create your Facade plugin
	3. Configure your Firely Server Facade
	Test your work

	Debugging the Facade
	Testing during implementation
	Next part of the exercise

	Finalizing your project
	Add support for the ViSiBloodPressure Observations
	Add support for chaining
	Add support for reverse chaining

	Get the goodies
	Adding a custom SearchParameter
	The end?
	Postscript

	Enable changes to the repository
	1. Map the FHIR data to the model
	2. Implement the IResourceChangeRepository
	Implementing Create
	Implementing Update
	Implementing Delete

	3. Configure the service and Firely Server
	The end?

	Firely Server Reference Documentation
	Plugins available for Firely Server
	Infrastructural plugins
	Support for different FHIR versions
	FHIR RESTful interactions
	Terminology
	SMART on FHIR
	Subscriptions
	Auditing
	Demo UI
	Documents
	Conversion
	Binary
	Repository implementations
	Administration API
	Bulk Data

	Important classes and interfaces
	IResource
	IResource extension methods

	ElementModel, manipulating IResource and ISourceNode
	ISourceNode manipulation
	ITypedElement manipulation

	IVonkContext
	IVonkRequest
	IArgumentCollection, IArgument
	Handling arguments

	IVonkResponse
	IFormatter

	Interaction Handling
	InteractionHandlerAttribute
	InteractionHandler fluent interface
	IApplicationBuilder extension methods
	VonkAppBuilder extension methods

	Pipeline configuration
	VonkConfigurationAttribute

	Repository interfaces
	ISearchRepository
	Using ISearchRepository
	Implement ISearchRepository

	IResourceChangeRepository
	Using IResourceChangeRepository

	Implement IResourceChangeRepository

	Constructing bundles
	Bundle POCO
	Bundle from SourceNodes
	Search result bundles

	Access Control in Plugins and Facades
	Access control implementation
	IReadAuthorizer
	IWriteAuthorizer

	Architecture
	Pipeline and middleware components
	Adding custom middleware

	Repository interfaces
	Search

	Capabilities

	Dependencies of Firely Server and their licenses
	Firely OSS License

	Tools
	Firely Server Ingest (FSI)
	Installation
	General usage
	Prerequisites
	Input files formats
	After the import

	Arguments
	Supported arguments

	Examples
	Monitoring
	Logs
	Performance counters

	Known issues
	Licensing
	Release notes
	Release 1.3.0
	Release 1.2.0
	Release 1.1.0
	Release 1.0.0

	Contact us
	Index

